Background & Motivations

Multiple missions, each with different requirements, may share common sensors to achieve their goals.

Perimeter defense
- To have adequate sensors along the perimeter

Target tracking
- To have enough sensors along the track of the target

Sensor network monitoring

- **Purpose**: continuously monitor sensors’ status (i.e., aliveness, battery state, etc.) and quickly detect coverage hole
- **Coverage hole detection**:
 - Use theoretical geographical techniques, e.g., Voronoi diagram, K-coverage
 - Require information about both sensor status and mission requirement

Mobility assisted sensing

- **Motivations for sensor relocation**
 - React to sensor failure
 - React to events (e.g., fire, chemical spill, incoming target): more sensors move to achieve a better coverage

Challenges of sensor relocation:
- It has strict time, power constraint
- Relocation should not affect other missions

Part I: finding the redundant sensors:
- Similar to the publisher/subscriber problem
- Flooding has too much overhead
- Use cascaded movement

Part II: relocating redundant sensors:
- Directly moving the sensor to the destination suffers from long delay and unbalance power consumption
- Use cascaded movement

Sensor network monitoring

- **Mission oriented**: satisfy the coverage requirement of perimeter defense, but present a coverage hole for target tracking

Previous work on sensor status monitoring
- **Centralized approach**: sensor status is aggregated and sent to a base station
- **Distributed method**: each node is monitored by its one-hop neighbors. It only detects the isolated failure pattern
- **Based on network topology continuously learned**: large overhead for sensor networks

Our solutions: a distributed poller-pollee structure

- The sensors are organized into clusters, with cluster head to be the *poller* and cluster members to be the *pollees*
- Our objective is to minimize the number of pollers subject to the constraint of bandwidth allocated to the monitoring purpose

Co-Design of monitoring and coverage hole detection

- **Coverage hole estimation** is executed by the sink whenever the mission requirement is changed
- **The sensor monitoring** is executed continuously, but should dynamically adapt to the mission within the area of interest

Prototyping

- UC Berkeley: COTS Dust
- UC Berkeley: COTS Dust
- Rockwell: WINS
- UCLA: WINS
- JPL: Sensor Webs

- Currently evaluate with ns.
- Considering prototype with commercial off-the-shelf component. Each -- robot is small (5” x 2.5” x 3”) and costs under $200 each
- Mobility, built from remote-controlled toy cars.
- Runs TinyOS, based on Berkeley Mica Motes, has processor and wireless communication.

This work is supported by National Science Foundation