There are two major security problems of overlay multicast: network access control and group key management. Previous research studied these two issues separately. By exploiting the special property of overlay multicast that a node is both a group member and a router, we propose:

- A bandwidth-efficient scheme CRBR that seamlessly integrates network access control and group key management.
- A DoS-resilient key distribution scheme k-RIP which delivers updated keys to a large fraction of nodes with high probability even if an attacker can selectively compromise nodes in the multicast data delivery hierarchy.

Certificate Revocation Based Group Rekeying Scheme

Performance Analysis

- Node Presence Dynamics
 - Exponential Distributions
 - A Queuing Model

- Two scenarios: multicasting and uncasting keys
 - Key server multicasts keys to online nodes
 - Key server unicasts keys to individual nodes who missed

A k-Random Injection Scheme

- Dos Resilient k-RIP scheme for Distribution of Small-size but Critical Information
 1. Key server gets from the Rendezvous Point (RP) a list of m nodes that most recently joined the group.
 2. Key server randomly tests presence status of m nodes until it finds k online.
 3. Key server send message to k nodes individually.

- Comparison with the basic scheme

Future Work

- Dynamic selection of k based on receiving status
- Attacks Detection and Attacker Identification using Probabilistic Methods