Location based services are becoming increasingly important to the success and attractiveness of next generation wireless systems. It is a challenge to maintain location privacy while still providing the flexible access to location information required to enable a rich set of location based services.

Design Philosophy
- user controlled location information access
- a group of entities defined by user to access its location information
- hierarchical coding of location information with different granularity
- providing keys to the group members to decrypt location information

Service Example
Location Based Instant Message Service:
For example: alert is sent to subscribers when a buddy is within a certain proximity.
Two models:
- end users and LIC are members of the location information group
- IM server is also a member of the location information group

Service Characterization
WHERE location information is generated
- by the end device or the network.
WHERE location information is stored
- in the end device, network, or not at all.
HOW information is accessed
- pushed at various intervals or pulled on-demand.
 - with WHOM the location information is shared
 - information may be shared with other end users,
 - in the end device, network, or not at all.

MIKEY and LKH
MIKEY as the basis of our protocol:
- lightweight protocol.
- adopted by the 3GPP MBMS group for 3G multimedia services
Two limitations of MIKEY:
- no hierarchy of group key servers support
- no re-keying support
Basic Solution:
- apply LKH to MIKEY to improve scalability with re-keying.

MIKEY-LKH Applied to Hierarchical Coding
Coding by Information Class
A user subscribes multiple groups to receive multiple granularity of location information. The cost of re-keying:

\[C_{\text{info}}(N) = \sum_{i=1}^{c} (2K \log(r_i \cdot N) + i) + P \]

Coding by Group
Each group re-keys independently of other groups. The cost of re-keying:

\[C_{\text{group}}(N) = \sum_{i=1}^{c} (2K \log(r_i \cdot N) + P) \]

Nested Hierarchy Coding
This relies on information hierarchy
The cost of re-keying:

\[C_{\text{nested}}(N) = \sum_{i=1}^{c} (2K \log(r_i \cdot N) + i) + P \]

Flat Coding
A flat relationship among sub-groups. The cost of re-keying:

\[C_{\text{flat}}(N) = \sum_{i=1}^{c} (2K \log(r_i \cdot N) + (c - j + 1) + P) \]

Performance Evaluation

<table>
<thead>
<tr>
<th>Method</th>
<th>Class</th>
<th>Group</th>
<th>Nested</th>
<th>Flat</th>
</tr>
</thead>
<tbody>
<tr>
<td>User Storage</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Multi-cast groups</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>File key</td>
<td>-</td>
<td>+</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Message delivery</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Computing at end device</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Flexibility</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>+</td>
</tr>
</tbody>
</table>

Note: + corresponds to an attractive characteristic,
- corresponds to a drawback, and 0 is neutral.