
Automatic Refactoring of Legacy Code for Security

Mining Security-Sensitive
Operations in Legacy Code

Vinod Ganapathy, Dave King, Trent Jaeger, and Somesh Jha

Future Work

A security sensitive operation is a distinct policy operation that is
performed within code. Our hypothesis is that security sensitive
operations leave fingerprints on protected data structures by
reading or writing to them.

We model fingerprints as sets of structure member accesses --
READs or WRITEs of protected data structures. Using static
analysis on the legacy codebase, we determine what possible
structure member accesses each API function.

Next, we use concept analysis, a hierarchical clustering technique, to
organize these structure member accesses into distinct security
sensitive operations, resulting in a set of candidate fingerprints,
which can be refined into fingerprints by domain-specific
constraints.

Finally, we place hooks into the old code, ensuring that every
structure member access is mediated by the appropriate policy
operation.

A large amount of work remains in the area of
retrofitting legacy systems for security. For example,
it is necessary to improve our static analysis such that
our results can scale better to even larger servers
such as the Linux Server. What role can domain-
specific and domain-independent constraints play in
improving these results?

The security model that we use is heavily based on
the model of structure member accesses: can we
automatically mine richer policy from code and gain
better guarantees?

Experimental Results
We ran our static analysis on three distinct servers.

• The ext2 filesystem, included in the Linux Kernel

• The main dispatch loop of the X Windows server

• PennMUSH, the server for a multi-user online game

Source code analysis was done with a module written in CIL (C Intermediate
Language), which uses plugins written in Objective Caml to perform
source-code analysis on C programs.

It took about about a half hour of manual work to check whether or not each
of the candidate fingerprints was security-interesting.

Sponsored by IBM Research

The classical argument is that systems can be built securely from the ground-up. However, for many systems, security becomes a
priority after its design. For example, it took over two years to retrofit the Linux kernel with the Linux Security Module to enforce
mandatory access control. If done manually, this process can be buggy, error-prone, and ad-hoc. We are interested in ways to
automatically retrofit security as a design concern in legacy systems.

Avg. Fingerprint
Size

FingerprintsLines of CodeServer

1.423894,014PennMUSH

3.76

3.36

11530,096X Server

184,476ext2

A lattice generated by Concept Analysis for
ext2. Security-interesting nodes are marked in
red.

