Data Dissemination in Vehicular Ad Hoc Networks
Jing Zhao and Guohong Cao

The Big Picture

- Vehicular ad hoc networks - VANET
 - Moving vehicles
 - Stationary sites
 - hotspots, infostations, sensors
- Task
 - Delivery a message from mobile vehicle to the fixed site besides street miles away.
 - Multi-hop forwarding through VANET.

Challenges

- Partitions
- Large scale sparse networks
- Uneven vehicle distribution
- High mobility
- End-to-end connection through multi-hop hard to set up
- Most current Ad hoc routing protocols implicitly rely on the existence of end-to-end connectivity; otherwise, drop packets.

Vehicle-Assisted Data Delivery (VADD)

- “Store, carry and forward”
 - Buffer and carry the packet when no routes
 - Forward the packet to the nodes moves into the vicinity which can help packet delivery
 - Possible to deliver the packet without an end-to-end connection
- Use predictable traffic pattern and vehicle mobility to assist data delivery

Key Issue

- Select a forwarding path with smallest packet delivery delay

Guidelines

- Make the best use of the wireless transmission
- Forward the packet via high density area
- Use intersection as an opportunity to switch the forwarding direction and optimize the forwarding path

VADD: Three Modes

- Intersection Mode
 - Optimize the packet forwarding direction
- StraightWay Mode
 - Geographically greedy forwarding towards next target intersection
- Destination Mode
 - Broadcast packet to destination

VADD: Intersection Mode

- VADD Model - Which direction to go?
 - Find out the next forwarding direction with probabilistically the shortest delay
 1. Estimate the packet forwarding delay (D_{tar}) between two adjacent intersections based on traffic statistics
 2. Use the probabilistic method to estimate the expected delivery delay from current intersection to the destination.
 $$D_{\text{tar}} = D_{\text{current}} + \sum_{j=1}^{n} (P_{\text{prob}} \times D_{j}) \cdots (1)$$
 3. Generate a linear equation system, and solve it by Gaussian Elimination
 $$P \cdot X = -D \cdots (2)$$

Output: Priority list of the outgoing directions for the packet forwarding

VADD Protocols

- L-VADD
 - Pick the closest carrier towards the preferred direction only based on location, e.g. A-B.
 - Vulnerable to Forwarding Loop
 - Negative on delivery ratio
- D-VADD
 - Only probe those carriers moving towards the preferred direction, e.g. A-C
 - Can be proved no Forwarding Loop
 - Delay may be higher
- H-VADD
 - Hybrid of L-VADD and D-VADD.

VADD: Intersection Mode

- VADD Protocol - Which carrier to take?
 - Not trivial, need to consider
 - Location
 - Mobility
 - VADD Intersection Protocols
 - Location First VADD (L-VADD)
 - Direction First VADD (D-VADD)
 - Hybrid VADD (H-VADD)

Result

- Delivery Ratio:
 - L-VADD (Low ratio)
 - D-VADD (High ratio)

- Delivery Delay:
 - L-VADD (Low delay)
 - D-VADD (High delay)

Conclusion

- Existing routing protocols are not suitable for DTN applications in VANET.
- VADD adopts the idea of “carry and forward”, and also explores the predictable vehicle mobility.
- Simulation results shows that the VADD protocols are better suitable for the multi-hop data delivery in VANET.

This work was supported in part by Army Research Office (W911NF-05-1-0270) and the National Science Foundation (CNS-0219711, CNS-0519460).