Wireless Networks

Channelization constraints specify possible channels to allocate

- Different ways to select channel

Categorization

Channelization - Single Radio

- Environment – Single Radio with 802.11 Phy
- Channels – TDMA slots
- Emphasis on multicast traffic in MANETs
- Hyperarcs

- Network Coding
 - Network Capacity

- Channel Access for Network Coding
 - Contention Based – 802.11
 - Scheduling Based
 - Centralized - TDMA
 - Distributed – NAMA, LAMA, PAMA, HAMA

- Contention Based Channel Access
 - Low network throughput in the presence of high load
 - High control overhead

- Drawbacks of channelization
 - Two Hop Information Required

- Channel Allocation Scheme
 - Forward propagation of used channel information
 - Reverse propagation of used channel information with Channel Allocation

- Channel Allocation Conflict at multicast points
 - Nodes downstream from a multicast point allow it to allocate channel

- Channelization constraints specify possible channels to allocate
 - Different ways to select channel

- Environment – Multi-radio, Multi-hop
- Wireless Cellular Network
- Relay networks are dynamically formed.
- Each relay network can be operating in different frequency.
- Relay network formation algorithm provides a simple and distributed frequency assignment scheme.
- It also provide an enhancement to improve network throughput of resulting relay networks.

- Frequency/Channel Assignment Scheme
 - While returning the RREP, the GW and intermediate nodes on the reverse path are responsible for assigning a non-interfering frequency to links on the path.
 - UFI, (Used Frequency Information) : The set of frequencies used in all incident links of node i
 - AF, (Available Frequency) : The set of available frequencies of node i
 - When node i receives UFI, from the NADV generated by node j, it re-calculates.
 - When node i receives a RREP from node i-1, it further re-calculates.
 - It then assigns a frequency to its next-hop-link by choosing from the resultant AF’.

- Local Optimization Scheme
 - Interference from remote nodes causes a drop in received SNIR at the interfered node so that it experiences a higher bit error rate.
 - 2-phase algorithm
 - Each node measures received SNIR of all its incident links periodically
 - It reassigns a new frequency to the interfered link if SNIR of the link has fallen off markedly.

- Performance Evaluation
 - Simulation using OPNET v.11.5

- Throughput gain of multi-hop cellular network
- Overall network throughput
- Improvement of node’s SNIR

This research is supported in part by NSF grant CNS-0508114 and DARPA grant BAA 05-42