Cryptography & Data Privacy
Research in the NSRC

Adam Smith

Assistant Professor
Computer Science and Engineering
Cryptography & Data Privacy @ CSE

NSRC

SIIS

Algorithms & Complexity Group

Cryptography & Data Privacy
Algorithms & Complexity

- **Research on the theoretical foundations of computer science**
 - Algorithm design
 - Complexity theory and lower bounds
 - Cryptography and information theory
 - Combinatorics and discrete mathematics

- **Collaboration with other research groups**
 - **Give**: abstractions, modeling, applications of algorithmic techniques
 - **Get**: new theoretical, mathematical challenges
Algorithms & Complexity: Faculty

- **Piotr Berman**
 - Combinatorial optimization, computational biology

- **Martin Fürer**
 - Complexity theory, combinatorics

- **Sean Hallgren (Sep. ‘07)**
 - Quantum computing, computational complexity

- **Sofya Raskhodnikova (Jan. ‘07)**
 - Sublinear algorithms, complexity, data privacy

- **Adam Smith (Jan. ‘07)**
 - Cryptography, data privacy, quantum information
Cryptography & Data Privacy

• Foundations of cryptographic protocols
 - Efficient Protocols for Multi-party Computations
 - (Im)possibility of Deniable Authentication
 [Dodis, Katz, S., Walfish, Y. Youn, in progress]

• Key Extraction from Noisy Secrets
 - biometrics, voiceprint [Eurocrypt 04/05, STOC 05, Crypto 2006, SICOMP 2008]

• Quantum cryptography
 - Understanding how recent technology impacts security and deniability [STOC 02, FOCS 02, Eurocrypt 05, STOC 06]

• Privacy in Statistical Databases
Privacy in Statistical Databases

Large collections of personal information
- census data
- medical/public health data
- social networks
- recommendation systems
- trace data: search records, etc
- intrusion-detection systems
Privacy in Statistical Databases

- Two conflicting goals
 - **Utility**: Users can extract “global” statistics
 - **Privacy**: Individual information stays hidden
Our Work

• Unify approaches from disparate fields
 - statistics, data mining, database theory, cryptography,...

• Rigorous formulations of “privacy”
 - Want **provable guarantees** that sensitive info. is not leaked
 - Should be secure against **arbitrary side information**

• New protocols / techniques [TCC’06, STOC’07, FOCS’08,...]

• New attacks [Ganta-Kasivswanathan-Smith, KDD 2008]
“Composition” Attacks \cite{Ganta-Kasiviswanathan-Smith, KDD 2008}

- **Example:** two hospitals serve overlapping populations
 - What if they independently release “anonymized” statistics?
- **Composition attack:** Combine independent releases
 - popular schemes leak lots of information
 - Litmus test for a proposed scheme’s reasonability?
“Composition” Attacks [Ganta-Kasiviswanathan-Smith, KDD 2008]

- **Example:** two hospitals serve overlapping populations
 - What if they **independently** release “anonymized” statistics?
- **Composition attack:** Combine independent releases
 - popular schemes leak lots of information
 - Litmus test for a proposed scheme’s reasonability?
Does it work for real?

- “IPUMS” census data set. 70,000 people, randomly split into 2 pieces with overlap 5,000.

With popular technique (k-anonymity, k=30) for each database, can learn “sensitive” variable for 40% of individuals.
New Protocols \textbf{[TCC ’06, STOC ’07, FOCS’08]}

- **New notion:** Differential privacy
 - Roughly: any single individuals’ data does not affect the release significantly
- **Robust against very strong attacks**
 - Correlation with arbitrary outside data collections
 - Composition attacks
- **Practical...?**
 - Common data mining algorithms can be modified to be D.P.
 - Apply current statistical methodology almost “as is”
Defining Privacy [D-M-N-S ‘06]

- Intuition:
 - Changes to my data not noticeable by users
 - Output is “independent” of my data
Defining Privacy [DiNi,DwNi,BDMN,DMNS]

- Data set $x = (x_1, \ldots, x_n) \in D^n$
 - Domain D can be numbers, categories, tax forms
 - Think of x as **fixed** (not random)
- $A = \text{randomized}$ procedure run by the agency
 - $A(x)$ is a random variable distributed over possible outputs
 Randomness might come from adding noise, resampling, etc.
Defining Privacy \([\text{DiNi, DwNi, BDMN, DMNS}]\)

\[x\] is a neighbor of \(x\) if they differ in one data point

Definition: \(A\) is \(\epsilon\)-differentially private if, for all neighbors \(x, x'\), for all subsets \(S\) of outputs

\[
\Pr(A(x) \in S) \leq e^{\epsilon} \cdot \Pr(A(x') \in S)
\]
Why is this a good definition?

• [DM] Differential privacy implies:
 No matter what you know ahead of time,
 You learn the same things about me
 whether or not I am in the database

• Suppose you know I have a history of diabetes
 ➢ You could learn that I have a high probability of early heart attack
 It doesn’t matter whether or not my data is part of it.
 ➢ Has the DB compromise my privacy?
 • No: it didn’t have my data.
 ➢ **Theorem** (Dwork-Naor): Learning things about individuals is
 unavoidable in the presence of external information
What can we compute privately?

• “Privacy” = change in one input leads to small change in output distribution

What computational tasks can we achieve privately?

• Research so far
 - Function approximation [DN, DN,BDMN,DMNS,NRS,BCDKMT,BLR]
 - Mechanism Design [MT]
 - Learning [BDMN,KLNRS]
 - Statistical estimation [S]
 - Synthetic Data [MKAGV]
 - Distributed protocols [DKMMN,BNO]
 - Impossibility results / lower bounds [DiNi,DMNS,DMT]
Our work \([TCC’06, STOC’07, FOCS’08]\)

- Rigorous proofs of security
- Robust against very strong attacks
 - Correlation with arbitrary outside data collections
 - Composition attacks
 - Multiple releases of the same data statistics
- Suitable for applications where individual/organizational privacy is paramount
Summary

• **Foundations of Cryptography**
 - Efficient protocols
 - Basic (im)possibility questions

• **Privacy in Statistical Databases**
 - New protocols, new attacks

• **In progress (we’re still fairly new!):**
 - Integration, collaboration with other CSE projects
Thank you

SIIS Lab:
http://siis.cse.psu.edu

A & C group:
http://www.cse.psu.edu/theory

Me:
http://www.cse.psu.edu/~asmith