Motivation

 Fill the gap between the mine industry and impact engineering.

Traditional landmine: pressure triggered

Sensor enabled smart-mine: sound, vibration, magnetism, wireless.

ESTC outdoor blast model: how standoff distance can affect the destructive effect

Problem Formulation

Objective: select the minimum-cost mines to destroy all targets with a predefined probability

Assumption:
1. The distance between the mine and target is known
2. ESTC outdoor blast model is used

Algorithms

The original graph is transformed into a **bucket-tub model:** each mine is modeled by a bucket set and each target is modeled by a tub.

Greedy algorithm: select the mine with the least average cost in each round

Layering algorithm: decompose the bucket-tub graph into layers

Performance

Theorem: the layering algorithm has an approximation ratio of $\alpha \cdot f$, where f is the maximum number of bucket sets associated with a target, and α is the relaxation factor

Distributed implementation: the same solution set is produced as in the global version of the greedy algorithm.

Publication

Published in INFOCOM 09, under review by JSEC journal