PENNSTATE

Exploring the TCB of Applications W

Hayawardh Vijayakumar, Trent Jaeger

A Trusted Computing Base (TCB) of an operating system (OS) is the minimal
amount of software necessary to enforce the security of the system. The TCB runs

at a high privilege level, so a compromise of any TCB component compromises the
whole system.

« The TCB has become bloated because it is the common factor among all
applications running in a typical system.

 From the point of view of a single application, however, not all of the TCB is used.
The TCB is determined by the security-sensitive operations performed by the

application.

« How much code that is security-sensitive is needed by a single application taken in - Security-Sensitive Dependencies
isolation?
The Problem. Given an application and its characteristics, we aim to precisely ‘ \ Non-Security- Sensitive Dependencies
define and locate its security-sensitive dependencies (i.e.,) its TCB, both in the

kernel and user-space.

Independent

but present in
085

INnitial Results

« Runtime coverage analysis of the kernel by particular
applications was studied. We call this the "slice of the
kernel w.r.t an application”.

« The program dhcpc (DHCP client) used only 4.9% of the
kernel when run over 2 days on an active computer.

 Coverage results for all the programs in the TCB of a
typical Linux system came to around only 22.5% when
run over 3 days.

 These results suggest that the security-sensitive part of
the kernel w.r.t an application will be less.

S
=

Filtering Interface

P || Apptcaion Next Steps

Non-Security-Sensitive OS Kernel

 Find ways of locating security-sensitive operations in a
system given the characteristics of the application

« Automatically partitioning the application into a VM with
a minimized kernel once its security-sensitive
dependencies have been found

Virtual Machine Monitor (VMM)

 Proving formal correctness of operations in the
minimized system

« Our aim is to automate identification of the security-sensitive code of

an application, with limited annotations from a user. Summary

« Once this is done, we could partition an application and its
dependencies into security-sensitive and non-security-sensitive

parts. We aim to identify the security-sensitive parts of an

« To isolate the security-sensitive part from the other part, we can application and methods to automatically partition an
have each part running in its own virtual machine (VM). Any application and its dependencies into security-sensitive
non-security-sensitive operation can be forwarded to the other VM. and non-security-sensitive parts

« Hence, compromise of the non-security-sensitive VM will not « Initial results suggest this might yield considerable
automatically lead to compromise of the security-sensitive VM. benefit and the security-sensitive part may be small.

Work Sponsored by NSF

