
Exploring the TCB of Applications
Hayawardh Vijayakumar, Trent Jaeger

Partitioning Applications

• A Trusted Computing Base (TCB) of an operating system (OS) is the minimal
amount of software necessary to enforce the security of the system. The TCB runs
at a high privilege level, so a compromise of any TCB component compromises the
whole system.

• The TCB has become bloated because it is the common factor among all
applications running in a typical system.

• From the point of view of a single application, however, not all of the TCB is used.
The TCB is determined by the security-sensitive operations performed by the
application.

• How much code that is security-sensitive is needed by a single application taken in
isolation?

The Problem. Given an application and its characteristics, we aim to precisely
define and locate its security-sensitive dependencies (i.e.,) its TCB, both in the
kernel and user-space.

Initial Results

• Runtime coverage analysis of the kernel by particular
applications was studied. We call this the “slice of the
kernel w.r.t an application”.

• The program dhcpc (DHCP client) used only 4.9% of the
kernel when run over 2 days on an active computer.

• Coverage results for all the programs in the TCB of a
typical Linux system came to around only 22.5% when
run over 3 days.

• These results suggest that the security-sensitive part of
the kernel w.r.t an application will be less.

• Our aim is to automate identification of the security-sensitive code of
an application, with limited annotations from a user.

• Once this is done, we could partition an application and its
dependencies into security-sensitive and non-security-sensitive
parts.

• To isolate the security-sensitive part from the other part, we can
have each part running in its own virtual machine (VM). Any
non-security-sensitive operation can be forwarded to the other VM.

• Hence, compromise of the non-security-sensitive VM will not
automatically lead to compromise of the security-sensitive VM.

Next Steps

• Find ways of locating security-sensitive operations in a
system given the characteristics of the application

• Automatically partitioning the application into a VM with
a minimized kernel once its security-sensitive
dependencies have been found

• Proving formal correctness of operations in the
minimized system

Summary

• We aim to identify the security-sensitive parts of an
application and methods to automatically partition an
application and its dependencies into security-sensitive
and non-security-sensitive parts

• Initial results suggest this might yield considerable
benefit and the security-sensitive part may be small.

Work Sponsored by NSF

