Justifying Integrity using a VM Verifier
Joshua Schiffman, Thomas Moyer, Trent Jaeger and Patrick McDaniel

- Cloud computing offers businesses and customers on-demand computing, storage, and virtual resources for their distributed applications.
- Cloud application integrity depends on the integrity of all components and inputs.
- However, the underlying infrastructure is opaque to consumers.

- Users and developers desire that cloud application satisfy specific risk guarantees to ensure:
 - VMM host integrity
 - VM data and code integrity
 - Untrusted inputs are discarded or upgraded
 - Data storage integrity

Example Scenario: Distributed Compilation

- Software distributions often involve compiling many source files for multiple target platforms
- Distributed compilation services like Canonical’s Personal Package Archive compile source packages on a distributed compilation cluster
- Subscribers to a PPA depend on the service to produce safe packages
- Need to ensure only high integrity processes and inputs affect the computation

Solution: Virtual Machine Verifier

- VM Verifier (VMV) justifies that a VM meets a classical integrity model like Clark Wilson.
- Verifies the VM’s initial integrity, installs integrity enforcement components in the VM, and provides a proof of the base’s integrity.
- Input from remote systems are integrity verified against an integrity criteria
- Overhead introduced by the VMV on a proof of concept PPA was less than 4% increase in compilation time, with the majority due to IPsec

Integrity Criteria

- Integrity criteria define the specific requirements a cloud application must meet for protecting its integrity. Our proof of concept system enforces an approximation of CW integrity called CW-Lite
- The VMV uses this criteria to verify VM integrity. The VMV also generates proofs of the VM’s integrity to remote parties
- Remote systems are verified using a VMV component called the Port Authority. If an input to application comes from a low integrity source, the PA must either discard or upgrade the input.
- A challenge is determining how to handle untrusted inputs to the system in general.

Publications

Joshua Schiffman, Thomas Moyer, Christopher Shal, Trent Jaeger, and Patrick McDaniel, Justifying Integrity Using a Virtual Machine Verifier. 25th Annual Computer Security Applications Conference (ACSAC), December 2009. (Acceptance rate 19%)