Social Network Based Worm Containment in Cellular Networks
Zhichao Zhu, Guohong Cao

Introduction & Motivation

- **New trends of Cellular Networks**
 - Openness would allow richer applications to run over mobile phones
 - Witness a similar evolution of worms as have been seen in wired world

- **Mobile Worms**
 - Mobile worm vs. Internet worm
 - Slow start and exponential propagation
 - Rely on social engineering (user interaction) for worm activation

- **Self-Propagated MMS Worms**
 - Exploring contact list (phonebook)
 - Exploring contact history (traffic records)
 - Trust within close friends wins higher chance of infection success

- **Cellular Social Relationship Graph**
 - Social networking between mobiles
 - Predict the worm propagation pattern
 - Traffic traces to a topology graph

This topology graph gives an overview of how mobiles are related with each other and how worms might use these social relationships to propagate themselves

Methods

- **Social Network based Patching Scheme**
 - Contest between worm propagation and patch dissemination
 - Uniform patching vs. Targeted patching
 - Time limits
 - Bandwidth bottlenecks

- **Targeted Patching**
 - Only mobile devices which act as a bridge between social clusters within the network should be patched first
 - **Balanced Patching vs. Clustered Patching**

- **Patching by Graph Partitioning**
 - Balanced Patching
 - Keep the damage to each partition balanced
 - i.e. multilevel KL algorithm
 - Clustered Patching
 - keep mobiles close to each other staying in the same partition, and divide nodes that are not close into different partitions
 - NP-hard Problem
 - **Heuristic Recursive Algorithm**
 - Expanding Stage
 - Grow each partition \(P \) by adding new nodes to it until \(C(P) \) does not increase any longer
 - Contracting Stage
 - Each partition \(P_i \) contracts to a node \(i \), all the interconnection edges between two partitions \(P_i \) and \(P_j \) become an edge \(e(i,j) \), \(w(i,j) = C(P_i, P_j) \)
 - Restoring Stage
 - replacing each condensed node in each partition with its original nodes

- **Contrbutions**
 - Constructed a topology graph of social relations between mobiles by extracting patterns from network traffic traces
 - Propose a new containment strategy by partitioning mobiles appropriately based on their social relationship graph
 - Experimentally compare our targeted patching algorithms against a benchmark uniformly random patching strategy

Trace-driven Approach

- Using a real network from one of the largest cellular service providers in the US for our worm propagation modeling and simulations
- Preserve the uniqueness of the identifiers of ip addresses and phone numbers involved
- Provide a sessions-level information for traffic exchanged between two endpoints per application over two weeks period in April 2008
- Contain information about 2 million users across 65000 base station cells all over the US with applications of MMS, HTTP, SIP and so on

More information is available: http://mcn.cse.psu.edu

This work was supported by Narus Inc.