Exploiting Open Functionality in SMS-Capable Cellular Networks

NSRC Industry Day
October 5th, 2005 - State College, PA
William Enck, Patrick Traynor, Patrick McDaniel, and Thomas La Porta
Unintended Consequences

• The *law of unintended consequences* holds that almost all human actions have at least one unintended consequence.
Preventing Large Scale Attacks

- Past truly damaging attacks follow a pattern ...
 - Bad guys find the vulnerability ...
 - Do some work ...
 - Then exploit it ..

- The exploit evolves in the following way:
 1. Recognition/discovery
 2. Reconnaissance
 3. Exploit
 4. Recovery/fix
SMS Messaging

• What is SMS?

• Allows mobile phones and other devices to send small messages containing text.
• Extremely popular with younger demographics.
• Ubiquitous internationally (Europe, Asia)
• Often used in environments where voice calls are not appropriate or possible.
• On September 11th, SMS helped many people communicate even though call channels were full
• Can be delivered via Internet (web, IM, email)
SMS message delivery in 30 seconds ...

- PSTN
- BS
- VLR
- MSC
- SMSC
- External Short Messaging Entity
- ESME
- HLR
- VLR
- BS
- BS
- BS
- BS
- BS

Cell Network
Mobile Switching Center
Short Messaging Service Center

Internet
The “air interface”

- **Traffic channels (TCH)**
 - used to deliver voice traffic to cell phones (yak yak ...)

- **Control Channel (CCH)**
 - used for signaling between base station and phones
 - used to deliver SMS messages
GSM as TDM

- GSM Analysis
 - Each channel divided into 8 slots
 - Each call transmits during its slot
 - BW: 762 bits/sec (96 bytes) per SDCCH
 - Number of SDCCH is 2 * number of channels
 - Number of channels averages 2-6 per sector

![Diagram of GSM as TDM]
The vulnerability

- Once you fill the SDCCH channels with SMS traffic, call setup is blocked

- So, the goal of an adversary is to fill the cell network with SMS traffic

- Not as simple as you might think
Reconnaissance

• What does an adversary need to know?
 • How messages are handled in the network?
 • What targets are available in the network?
Delivery Discipline

- Details are not specified in the standards documentation
- Messages can be injected faster than received
- How many messages does the network buffer per user?
 - Varied by provider, ranging from 30 to hundreds
- What happens when the buffer is full?
 - One provider ignored new messages
 - Another provider dropped older messages

- An **effective** attack must target many users
Finding cell phones ...

- North American Numbering Plan (NANP)

 \[\text{NPA-NXX-XXXX} \]

 Numbering Plan Area
 (Area code)

- NPA/NXX prefixes are administered by a provider
- Phone number mobility may change this a little
- Mappings between providers and exchanges publicly documented and available on the web

- *Implication*: An adversary can identify the prefixes used in a target area (e.g., metropolitan area)
Web scraping

• Googling for phone numbers

865 numbers in SC

7,300 in NYC

6,184 in DC

... in less than 5 seconds
Using the SMS interface

• While google may provide a good “hit-list”, it is advantageous to create a larger and fresher list

• Providers entry points into the SMS are available, e.g., email, web, instant messaging

• Almost all provider web interfaces indicate whether the phone number is good or not (not just ability to deliver)

• Hence, web interface is an oracle for available phones

<table>
<thead>
<tr>
<th>Sent At</th>
<th>Tracking ID</th>
<th>Recipient</th>
<th>Status</th>
<th>Date Delivered</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td>N/A</td>
<td>99999999999</td>
<td>Delivery to this destination failed due to invalid address.</td>
<td>N/A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sent At</th>
<th>Tracking ID</th>
<th>Recipient</th>
<th>Status</th>
<th>Date Delivered</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sending your message</td>
<td>NONE</td>
</tr>
</tbody>
</table>
The Exploit (Metro)

- **Capacity = sectors * SDCCH/sector * msgs/hour**

<table>
<thead>
<tr>
<th>Sectors in Manhattan</th>
<th>SDCCHs per sector</th>
<th>Messages per SDCCH per hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>55 sectors</td>
<td>12 SDCCH/1 sector</td>
<td>900 msg/hr</td>
</tr>
</tbody>
</table>

\[
C \approx (55 \text{ sectors}) \left(\frac{12 \text{ SDCCH}}{1 \text{ sector}} \right) \left(\frac{900 \text{ msg/hr}}{1 \text{ SDCCH}} \right) \\
\approx 594,000 \text{ msg/hr} \\
\approx 165 \text{ msg/sec}
\]

- **165 msgs/sec * 1500 bytes (max message length) = 1933.6 kb/sec (193.36 on multi-send interface)**
- Comparison: cable modem \(\approx 768 \text{ kb/sec} \)
- Data Source: National Communication System NCS TIB 03-2 (SMS over SS7 networks)
Regional Service

- How much bandwidth is needed to prevent access to all cell phones in the United States?

\[C \approx \left(\frac{8 \text{ SDCCH}}{1 \text{ sector}} \right) \left(\frac{900 \text{ msg/hr}}{1 \text{ SDCCH}} \right) \left(\frac{1.7595 \text{ sectors}}{1 \text{ mi}^2} \right) \]

\((92,505 \text{ mi}^2) \)

\(\approx 1,171,890,342 \text{ msg/hr} \)

\(\approx 325,525 \text{ msg/sec} \)

- About 3.8 Gbps or 2 OC-48s (5.0 Gbps)
The solutions (today)

- **Solution 1**: separate Internet from cell network
 - **pros**: essentially eliminates attacks (from Internet)
 - **cons**: infeasible, loss of important functionality

- **Solution 2**: resource over-provisioning
 - **pros**: allows a mitigation strategy without re-architecting
 - **cons**: costly, just raises the bar on the attackers
The solutions (tomorrow)

- **Solution 3**: Queuing
 - Separate queues for control vs. SMS
 - Control messaging should preempt with priority
 - Cons: complex to do correctly

- **Solution 4**: Rate limitation
 - Control the aggregate input into a network/sector
 - Cons: complex to do correctly

- **Solution 5**: Next generation networks
 - 3G networks will logically separate data and voice
 - Thus, Internet-based DOS attacks will affect data only
 - Cons: available when?
The Reality

- What is in place may prevent trivial exploits of the cell phone network
 - SMS messaging filtering
 - Over-provisioning

- Sophisticated adversaries could likely exploit this vulnerability without additional counter-measures
 - Many possible entry points into the network
 - Zombie networks
 - Little *network internal* control of SMS messaging
 - Note: Edge solutions are unlikely to be successful
Recommendations

- Short term: reduce number of SMS gateways and regulate input flow into cell phone network
- Remove any feedback on the availability of cell phones or success of message delivery
- Implement an emergency shutdown procedure
 - Disconnect from Internet during crisis
 - Only allow emergency services during crisis
- Seek solutions from equipment manufacturers
 - Separate control traffic from SMS messaging
 - Advanced cell networks
A cautionary tale ...

- Attaching the Internet to any critical infrastructure is *inherently* dangerous
- ... because of the *unintended consequences*
- *Will/have* been felt in other areas
 - electrical grids
 - emergency services
 - banking and finance
 - and many more ...
Thank you

More info:
http://www.smsanalysis.org/
http://siis.cse.psu.edu/

Contact: mcdaniel@cse.psu.edu