
Declassification with Cryptographic Functions
in a Security-Typed Language

Boniface Hicks, David King and Patrick McDaniel
Systems and Internet Infrastructure Security Laboratory (SIIS)

Computer Science and Engineering, Pennsylvania State University
Technical Report NAS-0004-2004
{phicks,dhking,mcdaniel}@cse.psu.edu

Abstract

Security-typed languages are powerful tools for prov-
ably enforcing noninterference. Real computing sys-
tems, however, often intentionally violate noninterfer-
ence by deliberately releasing (or declassifying) sensi-
tive information. These systems frequently trust cryp-
tographic functions to achieve declassification while
still maintaining confidentiality. We introduce the no-
tion of trusted functions that implicitly act as declas-
sifiers within a security-typed language. Proofs of the
new language’s soundness and its enforcement of a
weakened form of noninterference are given. Addi-
tionally, we implement trusted functions used for de-
classification in the Jif language. This represents a
step forward in making security-typed languages more
practical for use in real systems.

1 Introduction

Data confidentiality is a principal element of secure
systems design. However, comprehensive solutions
remain surprisingly elusive: massive data compro-
mises have become commonplace, and the resulting
costs are in the billions of dollars. Regulatory bod-
ies are responding to this threat, but currently provide
only punitive, negative incentives [oHotS03]; they do
not require provable security guarantees. Moreover,
the effectiveness of the often ad hoc certification pro-
cesses currently performed on critical systems is ques-
tionable [KSRW04]. This is not surprising as the
sources of information leakage can be quite subtle
(consider the slow leakage of data made possible by

timing attacks [BB03]). Simply put, it is infeasible to
understand all information flows present in any non-
trivial application without automated assistance.

A promising approach to solving the confidentiality
problem is to build systems that enforce information
flow security. In such systems, data is tagged with a
security level. The system then enforces the property
of noninterference: data tagged with a high security
level may not flow to low security channels. Manda-
tory access control systems enforce noninterference
dynamically by mediating sensitive operations (e.g.,
system calls) via an external monitor [Fen73, Fen74].
Monitor-based systems have historically been ham-
pered by performance overhead and their limited abil-
ity to track implicit information flows [DD77]. More
recently, researchers have sought to use programming
language techniques to enforce noninterference stati-
cally. In such systems, a type checker is augmented to
track information about data security levels, treating
illegal information flows as a type error.

Unfortunately, noninterference is too restrictive for
many common applications. Consider a password
checker that compares a low-security guess with a
high security password and releases a single bit about
the high security password (i.e., whether the guess
is correct). This violates pure nointerference. Like-
wise, when high-security plaintext is encrypted and
sent over a low-security channel, some information,
despite how minuscule, is leaked. To handle these and
other legitimate, intentional releases of high security
data, practical security-typed languages must include
a mechanism fordeclassification.

The problem is that existing declassification mech-
anisms do not distinguish between leaking only small

1

amounts of information (as in the above examples)
and leaking unlimited amounts of information. To
address this problem, previous approaches [CM04,
LZ05] have sought to provide a powerful, general
theoretical framework for characterizing the ways
that declassification may release information. These
frameworks have not been implemented. Our work
approaches the problem from a new angle. We make
no attempt to provide such a general theoretical frame-
work; we believe that declassification is most often
found in a few, specific forms. In particular, recent
evidence suggests that the majority of cases in which
declassification is needed involve the use of crypto-
graphic functions [AS05]. Furthermore, by focusing
only on this specific area of declassification, we are
able to provide not only proofs of correctness and se-
curity, but also an implementation in a security-typed
language.

In this paper, we extend security-typed languages
with trusted declassification functions. These func-
tions can declassify data for principals that trust them.
This language device is used to formalize the rela-
tionship between one-way functions and noninterfer-
ence. Trusted functions become implicit declassifica-
tion mechanisms, obviating the need for explicit pro-
grammer declassification in these cases. We make the
following contributions in this paper:

• The simple security-typed languageλF
sec is for-

mulated and illustrated.λF
sec supports a notion

of trusted declassification, allowing trusted func-
tions to declassify private data.

• A proof of noninterference modulo trusted func-
tions for λF

sec is given.

• We implement the language extensions in the Jif
compiler [MNZZ01], a security-typed variant of
Java.

The rest of the paper is structured as follows. We
begin in the following section by illustrating type se-
curity, declassification, and our approach via an ex-
ample. Section 3 gives high-level descriptions of the
important theoretical constructs later defined formally
in Section 4. Also included in Section 3 is a care-
ful description of the properties of cryptography we
utilize, as well as our assumptions about the adver-
sary we model. Section 5 gives theorems and proofs

for the important properties of our language, namely
soundness and noninterference modulo trusted func-
tions. In Section 6, we describe our extension to the
Jif language with a constraint which marks functions
as being one-way and trusted for declassification. We
discuss general issues associated with our technique
in Section 7. Section 8 presents related work. We
conclude in Section 9.

2 A Motivating Example

A security-type system extends standard types with
security-label annotations. In the following example,
we give code that could be run by Alice to send a
secret message to Bob over a public channel. Here,
a two-point lattice of security labels is used with
secret being at a higher security level thanpublic1

(writtenpublic v secret).

void send(String{public} address,

String{public} message);

...

String{secret} msg = "Attack at dawn.";

send("Bob",msg);

In this code,msg is tagged as secret data by labeling its
type with{secret}. The prototype given here for the
send function indicates thatsend requires its inputs
to be public. This prototype is fitting, becausesend is
meant to be a function which sends a message over a
public channel.

If executed as is, this code would violate nonin-
terference, because Alice is attempting to send secret
data on a public channel. Consequently, in a security-
typed language, the type-checker will flag this infor-
mation leak, becausemsg’s security level is not as
low as the corresponding formal parameter tosend

(secret 6v public). Thus this program is disallowed
by the compiler.

Intuitively, we should be able to fix this code by
using RSA to encrypt the message with Bob’s public
key. Consider the following:

1In Jif, public is denoted as{}. Mathematically, public is de-
noted⊥, while the most secret values are denoted as>. Here we
use “public” and “secret” for ease of reading.

2

void send(String{public} address,

String{public} message);

...

String{secret} msg = "Attack at dawn.";

Key{public} bKey = PKI.getPubKey("Bob");

send("Bob",RSAencrypt(msg,bKey));

In fact, this may not fix the problem; it still de-
pends on the security annotations in the prototype for
RSAencrypt. We would like this prototype to be

String{public}

RSAencrypt(String{secret} plaintext,

Key{public} pubKey);

This prototype asserts thatRSAencrypt produces a
public output given asecret input. The only way a
function could be annotated in this way is if it either
1) did not involve its secret inputplaintext in the
computation of the output in any way, or 2) if it had
a declassification hidden in the function body. The
former cannot be true here becauseplaintext is ob-
viously used to produce the output.

This is because, strictly speaking, RSA encryption
doesreveal information about its input. Suppose that
msg were declared as:

String{Alice} msg = "Lie in wait.";

In this case, a different ciphertext will be sent to Bob
and an observer will be able to tell the difference be-
tween the original code and the modified code, even
though they cannot determine what either message
means. This violates pure noninterference: a low-
security observer sees two different low-level outputs
for runs on two different high-level inputs.

This contradicts a basic security assumption—in
practical systems with computationally bounded ad-
versaries, one-way functions reveal no information
about their inputs. To capitalize on this property, we
introduce a new option:RSAencrypt can be assigned
a principal,RSA, and marked as a trusted declassifica-
tion function. This gives us the following secure code:

String{public}

RSAencrypt(String{secret} plaintext,

Key{public} pubKey)

where declassFor(RSA,secret);

void send(String{public} address,

String{public} message);

...

String{secret} msg = "Attack at dawn.";

Key{public} bKey = PKI.getPubKey("Bob");

send("Bob",RSAencrypt(msg,bKey));

In this code fragment, a new constraint is intro-
duced which associates a security levelRSA with
RSAencrypt. If secret trustsRSA (secret v RSA),
then this function can be used to declassifysecret

data. The remainder of the paper discusses our analy-
sis and implementation of this approach.

3 Introduction to λ
F
sec

We highlight the common features in security-typed
languages and introduceλF

sec, a simple language with
functions that can be used for declassification. First,
we give a brief description of the adversary and the
security model.

3.1 Cryptography and Trusted Declassifica-
tion

It is important to consider which functions are appro-
priate to trust as declassification mechanisms. We ar-
gue onlyone-way functionscan be safely used for de-
classification. A functionf is one-way if for essen-
tially all inputsx, computingf(x) givenx is easy, but
finding somex givenf(x) is computationally infeasi-
ble [MVO96]. It is precisely this feature that makes
many forms of cryptography useful. For example,
in using encryption, it is assumed that the adversary
can learn little about the plaintext from the ciphertext
alone. Our work seeks to exploit this property within
a security-typed programming language.

This work assumes a computationally bounded ad-
versary. Because such an adversary cannot recover
secret inputs from the outputs of a one-way function,
these functions may be trusted to declassify data. Con-
sequently, for ease of exposition, the following sec-
tions treat one-way functions as though they expose

3

>

Alice

vvvvvvvvv

Bob Connie

JJJJJJJJJJ

⊥

tttttttttt

HHHHHHHHH

Figure 1: An example security lattice

no information,which is clearly not the case. The
amount of information a cryptographic algorithm ex-
poses is a feature of the algorithm itself and its secu-
rity parameters. We briefly discuss the implications of
this in Section 7.

3.2 The Security Lattice

In asecurity-typed language, values are assigned a se-
curity level. Security levels are taken from asecurity
latticeL: a static encoding of access control policy. If
l, l′ ∈ L, we write` v `′ to indicate that̀ ′ is at least
as secure as̀.

There is a “write-up, read-down” relationship on
data in the security lattice. Anyone at level` can read
data that is stored at a level`′ v `. Similarly, any data
stored at level̀ can always be made more secure to a
level `′, where` v `′. This is the?-property [LB73].

An example security lattice is given in Figure 1.
The highest security level is>; none of Alice, Bob, or
Connie can view data stored at> security. The lowest
security level in the lattice is⊥; anyone can read⊥
data. As there is nov relationship betweenAlice and
Bob, Alice cannot read Bob’s data nor vice versa.

A security latticeL is ajoin semilattice: for any two
levels`, `′ ∈ L, there is a security level̀t `′ ∈ L,
where` t `′ is the least upper bound of` and`′. The
least upper bound of two security levels is the lowest
security level that is at least as secure as both` and`′.
Any two security levels have a lower bound (⊥), but
they do not necessarily have a greatest lower bound.
Thev relation is transitive: if̀ is at least as secure as
`′ (`′ v `) and`′′ is at least as secure as`′ (`′′ v `′),
then` is at least as secure at`′′ (`′′ v `).

3.3 The LanguageλF
sec

λsec is a simple security-typed language; it has expres-
sions for function abstraction, application, condition-
als, and primitives operating on integer and boolean
values. It is a purely functional language: lambda
functions are first-class values and there is no notion
of program state.

λF
sec isλsec extended withtransformation functions.

Transformation functions are a generalization of prim-
itives such as addition or multiplication: they trans-
form one value into another. Each transformation
function F is associated with a security level`F , the
upper bound on the data thatF is able to declassify. To
our knowledge, this is the first time that named func-
tions are associated with a level in the security policy
lattice.

Transformation functions can model important op-
erations such as addition, equality testing, public-key
encryption and decryption, hashing, and so on. It have
would be simple to add a new encryption type con-
structor instead; a value of typet enc would then be an
encrypted value of typet. However, this restricts the
use of encrypted values. For example, an arithmetic
function on integers has typeint× int → int: it could
not also operate on encrypted values. It is often neces-
sary to perform operations on encrypted values, such
as sending them over public channels, writing them
out to files, or exploiting homomorphic properties of
the encryption. We therefore choose a more general
approach.

Some of these functions can be used for declassi-
fication of high-security data, e.g. encryption. The
addition function reveals too much information about
its inputs to be a safe declassifier, while the result of
a public-key decryption should be kept secret. Equal-
ity testing is a transformational function that can be
either trusted or not, depending on whether a user
wishes to allow potentially dangerous information re-
lease [Vol00].

Let `F be the security level associated withF . If
Alice trusts a transformational functionF , the rela-
tion Alice v `F holds inL. Figure 2 shows an exam-
ple security policy, extending the simple lattice given
earlier. Alice allows her data to be declassified af-
ter it passes through either an RSA or a DES encryp-
tion function. Bob insists that his data can only be
declassified after public key operations, while Connie

4

>

rsa_encrypt

lllllllllllllll

rsa_decrypt des_encrypt

RRRRRRRRRRRRRRR

Alice

ffffffffffffffffffffffffffff
Bob

RRRRRRRRRRRRRR

Connie

⊥

lllllllllllllll

RRRRRRRRRRRRRRRR

Figure 2: An example security lattice with trusted and
untrusted functions

does not allow her information to be declassified at
all. Wisely, none of the principals allow their data to
be declassified after being passed through a decryp-
tion function.2

The above notion of trust becomes even more use-
ful when dealing with applications such as password
checking. Traditional noninterference does not allow
information release with an equality test. In the lan-
guageλF

sec, users are able to specify with fine gran-
ularity which methods of information release are al-
lowed.

3.4 Evaluation in λ
F
sec

Lete be the expressionrsa_encrypt(x), wherex is a
variable owned by a principal that trusts RSA encryp-
tion to declassify her data. After substituting a value
for x, the end result of computinge is some ciphertext.
Even though two different ciphertexts look random to
an observer, different values yield different resulting
ciphertexts; this violates pure noninterference.

For this reason, evaluating an expression inλF
sec is

composed of two distinct steps. Theoperational se-
manticsprovide a method of reducing the portions of
the program which do not rely on transformation func-
tions, while thereduction semanticsevaluate transfor-
mation functions. Our noninterference result then ap-

2Though we can have transformation functions for both en-
cryption and decryption inλF

sec, our focus in this work is on func-
tions trusted to serve as declassification mechanisms. Declassi-
fying the result of decrypted ciphertext would reveal the original
message; for our purposes then, decryption is not an interesting
operation.

(λx.F (x))⊥ 5

(λx.F (x))⊥ 5⇓F (5)
��

F (5)

JF (5)K{F}=q4Fjkv12CV

��

q4Fjkv12CV

Figure 3: An example two-step evaluation inλF
sec

plies to the languageλF
sec after the operational seman-

tics are applied but before the reduction semantics are
invoked.

Figure 3 provides an example evaluation. Suppose
F is an encryption function outputting the ciphertext
q4Fjkv12CV for the input value5. During the exe-
cution of the programP ≡ (λx.F (x))⊥ 5, the oper-
ational semantics first apply to the parts of the pro-
gram that do not rely on transformation functions: in
this case,(λx.F (x))⊥ 5 ⇓ F (5). After everything
else has been evaluated, the reduction semantics are
applied, filling in the semantic meaning of the trans-
formation functions. The reduction semantics then
yield JF (5)K{F} = q4Fjkv12CV, and so the execu-
tion of the programP ultimately results in the string
q4Fjkv12CV.

The operational semantics ofλF
sec first evaluates an

expression to an intermediate state where values are
either basic values (integers, booleans), lambda func-
tions, or the result of the application of a transforma-
tion function. Transformation functions as they occur
in λF

sec are designated bytransformation function sym-
bols: the symbolF , used in the operational semantics,
corresponds to the semantic functionF , used in the
reduction semantics.

4 Formal Definition of λ
F
sec

The syntax ofλF
sec is given in Figure 4.λF

sec is not a
strict extension ofλsec: we remove the primitive op-
eration⊕ from the language and introduce in its place
an expression for applying transformation functions.
λF

sec also introduces product expressions,〈e1, e2〉, and
the usual expressions for dealing with them,fst(e) and
snd(e). Binary primitives used inλsec are then added
to λF

sec as transformation functions. For example, the

5

Security Levels ` ∈ L
Security Types s ::= t`
Base Types ι ::= int | bool

Types t ::= ι | s1 × s2 | s1 → s2

Base Values b ::= 0 | 1 | · · · | true | false
Values v ::= b` | x | (λx.e)` |

〈v1, v2〉 | F (v)
Expressions e ::= v | e1 e2 | 〈e1, e2〉 |

fst(e) | snd(e) | F (e)

Figure 4: Syntax forλF
sec

λsec expression2 + 3 corresponds to theλF
sec expres-

sion +(〈2, 3〉), where+ is a transformation function
symbol representing the semantic addition function on
integers.

Transformation function symbols are denoted byF .
The type of a transformation function symbol is given
by type(F) = ((t′)`′ → (ι)`′)`F

. The type`F is
the security level of the transformation function sym-
bol F , and is the upper bound on information thatF
is trusted to declassify. Transformation functions al-
ways take values at one security level`′ to another
value at the same security level (but not necessarily
the same type). Declassification then results from the
context that the transformation function is used in and
is not reflected by the function’s type. A transforma-
tion function can then be used in two different loca-
tions, serving as a declassification method in the first
and not in the second; this is more general than will
be later required by our implementation.

We assume that the return type of the transforma-
tion function is a base type such asint or bool. We do
this to ensure that we can always reduce the result of a
transformation function. If we allow expressions such
as fst(F (e)), then values in our language no longer
can be identified solely by their syntactic form. We
restrict the return type to be a base type; this limitation
is reasonable as transformation functions are meant to
be a generalization of the notion of a primitive.

The functionlvl(s) is defined on labeled types as
lvl(t`) = `. The lattice operationv is also extended
to security types:s v ` if lvl(s) v `. Write s ast`,
then the security typest`′ is defined to bet`t`′ , while
the security types u ⊥ is t⊥. Intuitively, s t `′ is the

security types raised to be at the least security level
above bothlvl(s) and` while su⊥ is the security type
s fully exposed to the public.

The reduction semantics are given in Figure 5. The
transformation function symbolF is given meaning
by the semantic transformation functionF . Each se-
mantic transformation functionF is a partial function
on the set of values; iftype(F) = (t′`′ → t`′)`F

, then
F is a function from values of typet′ to values of type
t. O is a set of semantic transformation functionsF .
The reduction ruleJv′KO = v gives meaning to trans-
formation function symbols in the valuev′.

The typing rules forλF
sec are the same as the typ-

ing rules forλsec for their common syntactic construc-
tions (if statements, function abstraction and applica-
tions, and so on). ContextsΓ are maps from variables
to security types: in an expressione, the contextΓ
gives meaning to free variables ine. The typing judge-
ment then isΓ ` e : s, read as “under contextΓ, ex-
pressione has security types.” In Section 5 we will
see that this implies thate evaluates under the opera-
tional semantics to a valuev and` v : s.

The two new important typing rules are
(TP-TRANS1) and (TP-TRANS2). (TP-TRANS1)
states that if a transformation function is not trusted
to declassify data at thelvl(s1) security level, then
its application can only raise the security level of the
result. On the other hand, if it is trusted to declassify
data at that level,(TP-TRANS2) allows the result to
be declassified to the⊥.3

In both cases, the type of the argument need only
be a subtype of the argument that the transformation
function expects. This adds a form of label poly-
morphism to these transformation functions. For ex-
ample, there may be one encryption functionF with
type(F) = (int> → int>)`F

. Let v be a value with
` v : intAlice. If Alice trustsF for declassification,
thenF (v) can be given the security typeint⊥; other-
wiseF (v) has the security typeint>. F can also be
applied to a value of typeintBob or anintConnie with
the same declassification behavior.

The operational rule(EV-TRANS) evaluates the in-
side of the application of a transformation function.

3It may be useful for some functions to only declassify data
to a certain security level for such applications as secret splitting.
We do not consider this possibility, though we believe such an
extension would not be difficult.

6

JbKO = b
(RED-BVAL)

J(λx.e)`KO = (λx.e)`
(RED-LAM)

Jv1KO = v′1 Jv2KO = v′2
J〈v1, v2〉KO = 〈v′1, v

′
2〉

(RED-PROD)

F ∈ O JvKO = v0 F(v0) = v′

JF (v)KO = v′
(RED-ORAC)

Figure 5: Reduction Semantics

The important typing rules and operational semantics
are given in Figure 6.

The security lattice induces subtyping judgements
on security types and normal types:s � s′ andt � t′.
Write s ast` ands′ ast′`′ : if s � s′, thent � t′ and
` v `′. As usual, function types are contravariant and
product types are covariant [Pie02]. Ifs � s′ and the
type derivationΓ ` e : s holds, then by the(TP-SUB)
rule we can construct the derivationΓ ` e : s′.

Extending the theory ofλF
sec to include state, an

operator for unbounded recursion, concurrency, and
message-passing would not be difficult; security-
typed languages that incorporate these already exist.
However, some language features add new methods
of exposing information. By focusing on a small core
language, we are able to concentrate on the important
issues raised by placing transformation functions in
the security lattice.

The typing rules, operational semantics, and sub-
typing judgement for the full languageλF

sec are given
in Appendix A.

5 Properties ofλF
sec

We now demonstrate that a number of standard lan-
guage properties hold inλF

sec. We first show that the
language issound, i.e. a typing judgement implies
safe evaluation. We then show thatnoninterference
modulo trusted functionsholds.

5.1 Properties of the Observer

The formal security semantics presume that an ob-
server is at security levelζ. An expressione is then
noninterfering modulo trusted functionsif any two in-

Γ ` e : s1

type(F) = (s′ → s)`F

s1 v s′ s1 6v `F

Γ ` F (e) : s t lvl(s1)
(TP-TRANS1)

Γ ` e : s1

type(F) = (s′ → s)`F

s1 v s′ s1 v `F

Γ ` F (e) : s u ⊥
(TP-TRANS2)

Γ ` e : s s � s′

Γ ` e : s′
(TP-SUB)

e ⇓ v

F (e) ⇓ F (v)
(EV-TRANS)

Figure 6: Important Typing Rules and Operational Se-
mantics

puts toe which are indistinguishable belowζ result
in computations that are also indistinguishable below
ζ. Our observers occupy a position in the security
lattice. For example, an omniscient adversary might
occupy the level> in the lattice and thus be able ob-
serve all changes in data, no matter at what security
level. Any program using RSA encryption would then
violate noninterference to such an adversary.

As we consider our adversary to be computation-
ally bounded, they occupy a security levelζ not above
the levels of one-way functions such as RSA or DES
encryption. Our adversary may be above the secu-
rity levels of transformation functions such as addi-
tion, multiplication, equality testing. Noninterference
modulo trusted functions holds for a program as long
as none of the transformation functions used for de-
classification is below the observer’s security levelζ.
Note that if no transformation functions are used for
declassification, then pure noninterference holds.

5.2 Language Properties

Our languageλF
sec has a few important properties. For

example, typing rules are invariant under variable sub-
stitutions and expressions that are given a security
type evaluate to values of the same type. These stan-
dard results show that the typing rules correctly corre-
spond with the operational semantics.

A substitutionγ is a finite map from variables to
values. A substitution is said to satisfy a type envi-

7

ronment (γ |= Γ) if γ is a type-preserving substitu-
tion, meaning thatγ assigns each variable a value of
the security type required byΓ. The notationγ(e) is
short-hand for a simultaneous, capture-avoiding sub-
stitution.

Definition 5.1. For γ a substitution andΓ a type en-
vironment,γ |= Γ if dom(Γ) = dom(γ) and for all
x ∈ dom(Γ), ` γ(x) : Γ(x).

The following results are easily proved by induc-
tion.

Lemma 5.2 (Value Substitution). If Γ ` e : s and
γ |= Γ then` γ(e) : s.

Proof. By induction on the shape of the typing deriva-
tion.

The following theorem states that if an expression
is typable and its computation results in a value, then
the expression and the value have the same security
type.

Theorem 5.3 (Type Preservation).If ` e : s and
e ⇓ v, then` v : s.

Proof. By induction on the shape of the typing deriva-
tion, using Lemma 5.2 for the application case.

Theorem 5.4 states that “well-typed programs do
not go wrong”. If we type an expression to a value,
then it will not get stuck during its evaluation at a type
error. AsλF

sec has no expression that would allow un-
bounded computation, if an expression is typed under
the empty context, it will evaluate to a valuev.

Theorem 5.4 (Operational Soundness).If ` e : s,
then there exists av such thate ⇓ v.

Proof. Again, by induction on the shape of the typ-
ing derivation. Expressions always terminate as the
language has no unbounded computation, and expres-
sions never get stuck since transformation functions
always return a value that has a basic type.

As an immediate corollary, the reduction seman-
tics interact with the operational semantics to give a
full soundness result. Ife is properly typed and the
transformation functions are well-behaved, then it has
a complete two-step evaluation as discussed above.

Corollary 5.5 (Full Soundness). If ` e : s and for
every transformation function symbolF occurring in
e, F ∈ O andF is well-defined on the correct subset
of values as specified bytype(F), then there exists a
v′ and av such thate ⇓ v′ andJv′KO = v.

5.3 Security Properties

In this section, we give the formal definition of what
it means for a program to be noninterfering. We then
show that if a program has been given a security-type
judgement, then all evaluations of it are indistinguish-
able modulo the result of these transformation func-
tions.

We define what it means for two values to be obser-
vationally equivalent to an attacker. This is given by
the judgementv1 ≈ζ v2 : s, read “v1 is observation-
ally equivalent tov2 at security types to an observer at
security levelζ.” We extend the definition of≈ζ from
λsec for values of the formF (v) (the full definition of
≈ζ for all values can be found in Appendix A). The
intuition is that if an observer at levelζ can read both
of F (v1) andF (v2) and `F v ζ, then the observer
can seev1 andv2. If F is a one-way function andζ is
a computationally bounded observer, this corresponds
to the idea that no information is released byF .

Definition 5.6 (Value Observational Equivalence).
F (v1) ≈ζ F (v2) : t` if the following hold:

• ` F (v1) : t` and` F (v2) : t`

• type(F) = ((t′)`′ → (t)`′)`F

• ` v ζ and `F v ζ impliesv1 ≈ζ v2 : (t′)`Ft`

Subtyping interacts with observational equivalence
in the expected way. If two values are equivalent at a
security type, then they are also equivalent at higher
security types.

Lemma 5.7 (Subtyping). If v1 ≈ζ v2 : s ands � s′,
thenv1 ≈ζ v2 : s′.

Proof. Proof by induction on the structure of the
value. SupposeF (v1) ≈ζ F (v2) : s. We show
F (v1) ≈ζ F (v2) : s′.

SinceF (v1) ≈ζ F (v2) : s, we have the judgements

` F (v1) : s and ` F (v2) : s

8

By the rule(TP-SUB), we then have the typings

` F (v1) : s′ and ` F (v2) : s′

Sinces � s′, lvl(s) v lvl(s′). If lvl(s) 6v ζ, then
lvl(s′) 6v ζ and we are finished. Otherwise assume
`F v ζ. Then

v1 ≈ζ v2 : (t′)`Ftlvl(s)

We then have

(t′)`Ftlvl(s) � (t′)`Ftlvl(s′)

The required result then follows by induction.

The≈ζ relation is extended for expressions. Two
expressions are observationally equivalent if they
evaluate to observationally equivalent values.

Definition 5.8 (Expression Observational Equiva-
lence). Two expressionse1, e2 are e1 ≈ζ e2 : s if

• ` e1 : s and` e2 : s

• e1 ⇓ v1 ande2 ⇓ v2

• v1 ≈ζ v2 : s.

Two substitutions are “related” above a security
typeζ in a contextΓ if both γ1 andγ2 define the vari-
ables in the domain ofΓ and their definitions look the
same to an observer sitting at levelζ. Formally:

Definition 5.9 (Related Substitutions).Two substi-
tutionsγ1 andγ2 are related above a security levelζ
in a contextΓ, writtenΓ ` γ1 ≈ζ γ2, if:

• γ1 |= Γ andγ2 |= Γ

• for all x ∈ dom(Γ), γ1(x) ≈ζ γ2(x) : Γ(x)

Two related substitutionsΓ ` γ1 ≈ζ γ2 then are
the result of switching data at a level aboveζ. An at-
tacker should not be able to tell the difference between
applyingγ1 or γ2 to a “secure” expressione.

Theorem 5.10 (Noninterfering Substitutions). If
Γ ` e : s andΓ ` γ1 ≈ζ γ2, thenγ1(e) ≈ζ γ2(e) : s.

Proof. Proof proceeds by induction on the derivation
of Γ ` e : s. The two key cases are when the judge-
ment has been made by either of the transformation
function rules.

Γ ` e : s1

type(F) = (s′ → s)`F

s1 v s′ s1 6v `F

Γ ` F (e) : s t lvl(s1)
(TP-TRANS1)

Γ ` e : s1

type(F) = (s′ → s)`F

s1 v s′ s1 v `F

Γ ` F (e) : s u ⊥
(TP-TRANS2)

In either case, apply induction to the derivationΓ `
e : s1 to receive

γ1(e) ≈ζ γ2(e) : s1

By the definition of≈ζ , we have the evaluations

γ1(e) ⇓ v1 γ2(e) ⇓ v2

and the equivalence

v1 ≈ζ v2 : s1

There are now three important security labels to keep
track of.

• `1 is the security level of the initial data, before
the transformation has been applied. Here`1 =
lvl(s1).

• `F is the security level of the function.

• ` is the security level of the final data.

Write s1 ≡ (t1)`1 ands′ ≡ (t′)`′ ; sinces1 v s′,
t1 v t′ and`1 v `′. With this rewriting, we have

v1 ≈ζ v2 : (t1)`1

For noninterference to hold, we need to show

F (v1) ≈ζ F (v2) : t`

For the desired result to hold, we must show that` v ζ
and`F v ζ impliesv1 ≈ζ v2 : (t′)`t`F

. We must then
show`1 v ` t `F : then ast1 v t′, Lemma 5.7 gives
required result.

9

If the rule(TP-TRANS1) holds, we havè = lvl(st
lvl(s1)) = lvl(st `1) and`1 v lvl(st `1)t `F ; thus
the result follows.

If instead the rule(TP-TRANS2) holds, we know
`1 v `F , and thus̀ 1 v ` t `F and again the result
follows.

We then have

F (v1) ≈ζ F (v2) : t`

and so

γ1(F (e)) ≈ζ γ2(F (e)) : t`

This is the required result.

The preceding theorem implies that noninterference
modulo trusted functions holds inλF

sec. As λF
sec is a

functional language, inputs to a program are given by
substitutions assigning values to free variables. If the
inputs for an expressione are indistinguishable above
ζ, this result guarantees that the computations result-
ing from the inputs are also indistinguishable above
ζ.

6 Implementation

A central motivation of this work was to make
security-typed languages more practical. We have im-
plemented our approach as an extension to Jif. Our ex-
tension consists of an annotation on functions which
associates each function with a principal and allows
the function to declassify data for all other principals
that trust that principal.

We chose Jif because it is a full-scale security-typed
language implementation based on Java. The only
other existing full-featured security-typed language is
Flow Caml, an extension of the functional language
Objective Caml. Some features of Jif, such as the
extensible Polyglot framework with which it is built,
made it a more attractive target for our implemen-
tation. Furthermore, since Jif already has a general
mechanism for declassification, we could leverage this
to provide our more specialized mechanism. Finally,
Jif’s ability to use the Java class libraries allowed eas-
ier integration of cryptography.

6.1 The Jif programming language

Jif is an object-oriented, strongly-typed language cap-
turing nearly4 a superset of Java. In Jif, the program-
mer must label types with security annotations. The
compiler uses these annotations during type-checking
to ensure noninterference.

The Decentralized Label Model (DLM) Types in
Jif are annotated with security labels based on the
DLM [ML00]. Similar to work in mandatory access
control that tags data with complete access control
lists, the DLM allows for the virtual tagging of data
with owners-readers lists. Each label consists of a set
of policies of the form{o:r1,r2,...,rn}, whereo
andri are principals witho being the owner of the
policy and theri being authorized readers of the pol-
icy. Furthermore, a label can consist of multiple poli-
cies (allowing for multiple owners of a piece of data).
As an example,int{Alice:} i; declares anint
owned and readable only byAlice (the owner is al-
ways implicitly included in the reader list). The state-
ment String{Bob:Charlie,Dana} str; declares
aString which is owned byBob but also readable by
Charlie andDana. Data may also be annotated with
multiple policies as inint{Alice:;Bob:} j;. The
policy onj indicates that it is owned and readable by
bothAlice andBob. In Jif, when a variable is used in
a security label, it refers to its own label. Thus, using
i andstr as defined above,float{i;str} f; de-
clares afloat that is owned by bothAlice andBob
and which can be read byCharlie andDana.

Selective declassification Jif implementsselective
declassification. Principals in Jif are defined external
to the program. Each one has a delegation set con-
taining all the principals it trusts. This forms a run-
time principal hierarchy. Each process maintains an
authority set which contains principals from the run-
time principal hierarchy. A process is only authorized
to declassify policies that are owned by principals in
its authority set. Our language extension takes advan-
tage of this as described below.

4Jif does not provide support for inner classes or threads, be-
cause of the ways they complicate information flow analysis.Jif
is described most completely by Myers [Mye99b] and a helpful,
practical overview, along with expository examples, is given by
Askarov and Sabelfeld [AS05].

10

Class parameterization Another feature in Jif
which we utilize is class parameterization. A Jif class
can be parameterized by a principal or security label.
This means that a class may be defined once and then
be instantiated at various security levels. For example,
we might want aVector class which containssecret
data and anotherVector class that containspublic
data. Without having to implement theVector class
multiple times, it could be parameterized with a label
and then instantiated at different levels. In Jif, such a
class could be defined as

public class Vector[principal P]

{

Object{P:}[]{P:} elements;

}

Note that the member arrayelements has two labels.
One is the label of theObjects stored in the array.
The other is the label of the array itself.

SinceVector has been parameterized byP, P can
now be used throughout the body of the class to denote
a principal. This principal will be instantiated when an
object of typeVector is declared, as in the following
code, whereAlice andBob are two principals.

Vector[Alice] vector1;

Vector[Bob] vector2;

Handling exceptions One thing which makes Jif
particularly challenging for programming is han-
dling the information leaks that occur through func-
tion termination, exceptions and side-effects. For
example, an encryption method that throws an
InvalidKeyException releases information about
the key (which is secret data) both by throwing the
exception (indicating the key is invalid) and by not
throwing the exception, i.e. by terminating normally
(indicating the key is not invalid). For this reason, it
can be advantageous to catch exceptions and handle
them locally in order to bound information leakage
they might cause. This is the approach we have taken
for our encryption function, allowing simpler integra-
tion of encryption for programmers using this class.

6.2 A language extension for cryptographic
declassification

The key insight in our formal system is in assigning a
principal to each function and allowing cryptographic
functions to be trusted for declassification by placing
them higher in the security lattice. In our implemen-
tation, we only need to mark those functions which
will be trusted for declassification. All other func-
tions are presumed to be unsafe for declassification
and thus implicitly labeled as⊥. Thus, our implemen-
tation serves to extend Jif with an additional optional
constraint which marks functions as being trusted for
declassification. This constraint assigns a principal to
a function and places it in the security lattice by relat-
ing it to some other existing principal. Corresponding
to the formal system, the constraint also requires the
compiler to make certain security label checks. Fi-
nally, the constraint relaxes noninterference, allowing
the return value of the function (which should be en-
crypted data) to be public.

It was already possible to use cryptography in Jif
prior to our extension. Because Jif builds on Java,
Jif programs can use the existing Java class libraries.
The only stipulation is that the programmer must pro-
vide security-annotated prototypes (calledJif signa-
tures) for each class, interface and method that has
been used. Methods may be marked asnative to sig-
nal Jif that Java code will be provided elsewhere for
the body of this method. The signatures for these Java
methods must be written in a way that truly reflects the
information leaked by the method, because the signa-
ture cannot be automatically checked by Jif. Ideally,
classes would be re-implemented in Jif to take advan-
tage of Jif’s automatic type-checking.

The primary Java class for cryptography is
the javax.crypto.Cipher class provided in
the Java Cryptography Extension (JCE). To
create a new DES cipher in CBC mode, the
Cipher.getInstance method is called with the
argument"DES/CBC/PKCS5Padding". The cipher’s
init method must then be called to configure it
for either encryption or decryption. Finally, an
encryption or decryption may be performed using the
methoddoFinal. The proper Jif signature for this
method is given in Figure 7.

This signature indicates thatdoFinal takes abyte
array which is at some security level, designated as

11

public native byte{this;input}[]{this;input} doFinal(byte{input}[] input)

throws IllegalBlockSizeException, BadPaddingException;

Figure 7: Jif signature for theCipher.doFinal method.

input. Furthermore, the elements of the array are
also at the security levelinput. The labelthis refers
to the label of theCipher instance whosedoFinal
method has been called. Thus, the encrypted output
array is labeled{this;input} because it contains
data that reveals information about both theCipher

instance used to encrypt it and also theinput array
which was encrypted.

In addition to producing ciphertext, an encryption
in CBC mode also generates an initialization vector
which is needed for subsequent decryption. Our Jif
Ciphertext class merely serves to package these two
outputs into a data structure as a single output from the
encryption function.

The syntax of the function constraint we have intro-
duced isdeclassFor(Principal, Principal). The
constraint declassFor(CryptoPrin,DataPrin)

indicates that theCryptoPrin is trusted to declassify
data owned byDataPrin. An example is given in
Figure 8. Although the methodencrypt takes as
input a key and data owned byAlice (i.e., annotated
with the label{Alice:}), the Ciphertext output
is completely public (given as{}). This corresponds
with the accepted notion that an encryption function
can safely publicize the ciphertext of secret data. It
indicates thatAlice trusts this function to declas-
sify her data because she believes it will reveal no
information about it.

The stipulations on the use ofdeclassFor are
the ones given in the formal semantics in Section 4.
Namely, all inputs to the method must be owned
by the principalDataPrin (or principals that trust
DataPrin) and DataPrin must trust the principal
CryptoPrin. We have extended the Jif compiler to
check these conditions automatically and then to de-
classify the return value of the method. Since Jif’s se-
lective declassification requires a process to have suf-
ficient authority to declassify, thedeclassFor con-
straint also extends the authority set of the calling pro-
cess to include theCryptoPrin principal.

The encryption function given above is limited in
that it can only be used forAlice. For real applica-
tions, we can take advantage of Jif’s class parameter-

ization and build a DES class which is parameterized
based on the data-owning principal as shown in Fig-
ure 9.

This allows theencrypt method to be invoked for
any desired principal as in the following code which
encrypts and declassifies Bob’s data using Bob’s key.

Key{Bob:} key = DES[Bob].getKey();

String{Bob:} data;

Ciphertext{} ciphertext =

DES[Bob].encrypt(key,data);

The full code for the DES class is given in Ap-
pendix B.

A full implementation of the language and associ-
ated documentation is available online at:

http://siis.cse.psu.edu/tools/infoflow/jif/jifcrypto.html

6.3 Implementation challenges

Jif is built using the Polyglot extensible compiler fron-
tend framework for Java [NCM03]. This framework is
powerful and robust, allowing arbitrary extensions and
deletions to the syntax of Java. Abstract syntax tree
(AST) extensions and deletions can be given along
with arbitrary additional passes over these ASTs.

An important challenge in implementing our ex-
tension was in determining how to handle the two
principals (CryptoPrin andDataPrin) involved in
thedeclassFor constraint. This required manipulat-
ing the static and dynamic principal hierarchies in Jif
(which correspond to the security lattice in our for-
mal system). In addition to the runtime principal hi-
erarchy described earlier, Jif also has a static princi-
pal hierarchy which can be formed within a program
through inserting dynamic checks. Since the body
of these dynamic checks will only be executed if the
check succeeds at runtime, the body can be statically
type-checked using the assumption that the delegation
(or “acts-for”) relationship holds. In this way, a static
principal hierarchy is formed.

The following code demonstrates how our DES
class would be used. In this example, a check

12

static public Ciphertext{} encrypt(Key{Alice:} key,

String{Alice:} s)

where declassFor(DESprin,Alice);

Figure 8: An encryption method for Alice’s data.

public class DES [principal P] authority(DESprin)

{

static public Ciphertext{} encrypt(Key{P:} key, String{P:} s)

where declassFor(DESprin,P);

...

}

Figure 9: A parameterized encryption method.

will be made at runtime to ensure thatAlice trusts
DESprin beforeAlice’s data may be encrypted and
declassified. If Alice does not trustDESprin, a
SecurityException is thrown.

actsFor(DESprin,Alice) {

Ciphertext{} ciphertext =

DES[Alice].encrypt(key,data);

}

else throw new SecurityException();

The declassFor constraint ensures at compile time
that such anactsFor check has been made and that
the CryptoPrin is already established to be higher
than theDataPrin in the static principal hierarchy.
This has the advantage of forcing the programmer to
be explicit about which cryptographic methods are be-
ing trusted for declassification in a given program.

An alternative we explored was to infer the
DataPrin by examining the owners of the labels of
the input arguments. Because of the limitations of
dynamic labels in the current version of Jif, how-
ever, we were unable to pursue this further. Cur-
rently, dynamic labels can only be inspected by using
a switch label statement. Furthermore, the label
would have to be passed in explicitly as a dynamic la-
bel, not merely inferred from the existing arguments,
as an artifact of how default labels are treated in Jif.

7 Discussion

7.1 A Practical Relaxation of Noninterfer-
ence

As is true with any program using declassification, this
work depends on a relaxation of noninterference. Our
relaxation is minimal, however, as we only allow as
much information as is leaked by trusted functions.
With the notable exception of one-time pads, all one-
way functions considered in this paper release some
information about the inputs [Sha49]. The amount
of information released is bounded by the algorithms’
security parameters and is assumed to be vanishingly
small. Ours is a general mechanism and hence not
bound to any particular algorithm. The use of one-
way functions makes the application output inherently
subject to cryptanalysis. This vulnerability is orthog-
onal to the present work. The lesson is that due cau-
tion must be used in selecting and using cryptographic
functions.

7.2 Language-Based Security Tools

The recent years have been marked by the emergence
of tools for enforcing static guarantees of language-
based information security. Programming language
techniques have laid the theoretical foundations for
the implementation of security-typed languages, but
new languages such as Jif and FlowCaml [MNZZ01,
Sim03] have made it possible for programmers to
write secure code in a robust, full-featured environ-
ment. These tools and research such as ours serve to

13

further supporthigh-assurancerequirement. Security-
typed languages provide a new approach to providing
provable security guarantees for critical applications,
e.g., medical devices, electrical grid control.

Two main challenges face the designers of these
language tools. The first involves increasing language
semantics with new features, such as run-time princi-
pals, revocation, and more coarse-grained policy con-
trols. The second involves making these tools easier to
deploy in business and government applications. Our
work meets this second challenge by tapping into a
well-understood programming mechanism and relat-
ing it to information flow control. Encryption and
hashing are fundamental tools for building secure ap-
plications and are naturally used for publishing secure
data in a way that maintains confidentiality. In the
realm of information flow control, this is called de-
classification. Thus, with this language extension, we
have tied together a standard security technique with
a less commonly understood mechanism for informa-
tion release in a way that is safe and intuitive.

7.3 Future Work

The languageλF
sec admits a simple noninterference

proof precisely because the semantics of a transfor-
mation function are not involved with our language se-
mantics. Consider a symmetric key encryption func-
tion such as DES: it takes an integer as a key ar-
gument, a string argument to encrypt, then returns a
string argument as the encrypted result. This function
should have the type

((int` × String`)` → String`)`DES

If DES is able to declassify data at security levell, the
result should be public. However, if the symmetric
key was originally viewable to the public, an observer
will be able to see changes in which value has been
encrypted. It may be illuminating to investigate some
notion of modeling values and their security levels as
trap-doors into certain transformation functions.

Another direction is in continuing this approach to
making simple, practical, safe mechanisms for declas-
sification. Other work [CM04, LZ05, AS05, SS05]
has identified common paradigms for safe declassifi-
cation. Although encryption is the most common, oth-
ers exist. One of particular importance are seals which

protect data until something occurs and then releases
data. An example is an auction where all bids are con-
fidential until a certain time when the winning bid is
released. Analogous to our work, there may be other
specialized, practical safe mechanisms for declassifi-
cation with which a security-typed language could be
extended.

Such mechanisms can best be recognized by mak-
ing the effort to build more applications with security-
typed languages. This would help in considering the
needs of systems designers when building real pro-
grams. Further case studies towards this end are
needed [Zda04, AS05].

8 Related Work

The concept of information flow control is well es-
tablished. After the first formulation for the Orange
Book lattice (Top Secret, Secret, etc.) by Bell and
La Padula [LB73] and the subsequent definition of
noninterference [GM82], Smith, Volpano, and Irvine
first recast the question of information flow into a
static type judgement for a simple imperative lan-
guage [VSI96]. The notion of information flow has
been extended to languages with many other fea-
tures, such as programs with multiple threads of ex-
ecution [SV98], functional languages and their ex-
tensions [Zda02] and distributed systems [MS03].
Sabelfeld and Myers [SM03a] provide a comprehen-
sive survey of the field.

Two robust security-typed languages have been
implemented that statically enforce noninterference.
JFlow [Mye99a] and its successor Jif [MNZZ01] in-
troduce such features as a decentralized label model,
label polymorphism, and run-time principals in an
extension to the Java language. Flowcaml [Sim03]
[PS02] implements a security-typed version of the
Caml language, that satisfies noninterference.

The property of noninterference tends to be overly
restrictive in practice. Most real programs require
some notion of interference and intentionally leak
some information to an observer. A simple password
checking program reveals one bit of information to
an observer: whether or not the guessed password
was correct. An encrypted message leaks a ciphertext
which is dependent on the input. This introducesde-
classification: the process of decreasing the security

14

annotation on data in some controlled manner. De-
classification is a powerful mechanism, but it violates
pure noninterference. It is therefore important to re-
tain some security guarantees when using declassifi-
cation. Sabelfeld and Sands recently provide a survey
of this field [SS05].

Intransitive noninterference[RG99] is a relaxing of
noninterference where information may flow between
different security levels by a some policy. If informa-
tion can flow from level̀ to level`′, we write` `′.
The policy may be intransitive:̀ `0 and`0 `′ do
not imply ` `′. We do not consider declassification
with this granularity in this paper.

Myers and Liskov [ML00] formulated aselective
form of declassification which requires that a process
have the properauthority in order to declassify data.
Each process is declared to have authority to act for a
(possibly empty) set of principals. That process can
legitimately declassify data owned by those princi-
pals. This is the notion of declassification that is built
into Jif and thus also the one extended by our imple-
mentation.

Myers and Zdancewic proposed arobustnessprop-
erty [ZM01] for declassification, for which a type sys-
tem [Zda03] and enforcement mechanism [MSZ04]
were subsequently developed. This work enforces the
security property that an attacker cannot exploit de-
classification to gain more information than is inten-
tionally released. This is accomplished by tracking
integrity and ensuring that declassification only takes
place in code trusted by the owner of the declassified
data.

Two other approaches have attempted to formal-
ize notions of declassification so that specific forms
can be expressed in concise terms. Chong and My-
ers [CM04] introduce the concept ofnoninterference
until conditions. This property guarantees that non-
interference is maintained until certain conditions oc-
cur (e.g. a seal is lifted, all bids have been cast in an
auction, or password guesses are checked by certified
code). Li and Zdancewic [LZ05] propose a mathe-
matical model calledrelaxed noninterferencewhich
factors a program into high and low inputs and speci-
fies exactly what high information is released by using
composable, extensional functions. These two works
are most relevant to our result. They seek to provide
a general mathematical framework for characterizing

the ways that declassification may release informa-
tion. We make no such attempt to provide this; rather
we focus on a very specific form of declassification—
encryption. Since the goal of our work is making
security-typed languages more practical rather than
more powerful, we address the form of declassifica-
tion which is most standard in secure programs. By
limiting the scope of our work, we are able to provide
not only a theoretical soundness result, but also an im-
plementation in a security-typed language.

Also related but orthogonal are quantitative ap-
proaches [Lau03, Low02, DPHW02, Vol00, SM03b]
and relative secrecy[VS00] which attempt to deter-
mine or bound how much information is released us-
ing probabilistic methods. We do not attempt to deter-
mine how much information is being released by these
trusted cryptographic functions; we trust that they re-
lease sufficiently little so as to be impervious to crypt-
analysis. This work could be complementary to ours
by providing further guarantees and give formal rea-
sons for trusting certain functions to declassify secret
data.

Several approaches towards showing security
through behavior equivalence have been done out-
side of a security-typed framework. Abadi and
Gordon [AG98] consider the spi-calculus [AG99]
with shared-key symmetric cryptography, and prove
a bisimulation result. Sumii and Pierce [SP01] focus
on extending theλ-calculus with cryptographic prim-
itives. Both show the behavioral equivalence of ob-
servationally equivalent systems and assume only one
implicitly trusted cryptographic function; they do not
consider more general declassification within a secu-
rity policy lattice.

9 Conclusion

In real systems, one-way functions are used to declas-
sify sensitive data because they are trusted to release
no information. Our work introduces this property
into a security-typed language. We annotate functions
with security levels. One-way functions may be an-
notated with a high security level; this indicates they
aretrustedand permits them to serve as a safe mecha-
nism for declassification. In this paper, we have given
a formal definition of a security-typed language with
this extension, and proved that it enforcesnoninterfer-

15

ence modulo trusted functions. Additionally, we have
implemented this extension in the Jif language. This
extension represents another step forward in making
provable noninterference policies accessible for prac-
tical applications.

Acknowledgements

A very special thanks to Michael Hicks for his re-
peated excellent and challenging reviews of the pa-
per. Thanks also to Tal Malkin for his help in aiding
our precision with the cryptography terminology. We
would also like to extend thanks to Stephen Chong
for his technical help with Jif and helpful reviewing
of the paper. Finally, thanks to John Hannan, Stephen
Tse, Aslan Askarov, Andrei Sabelfeld, William Enck
and Patrick Traynor for their helpful reviews and com-
ments.

References

[AG98] Martı́n Abadi and Andrew D. Gordon.
A bisimulation method for cryptographic
protocols. Lecture Notes in Computer
Science, 1381:12–26, 1998.

[AG99] M. Abadi and A. D. Gordon. A calcu-
lus for cryptographic protocols: The Spi
calculus. Information and Computation,
148(1):1–70, January 1999.

[AS05] Aslan Askarov and Andrei Sabelfeld.
Secure implementation of cryptographic
protocols: A case study of mutual
distrust. Technical Report 2005-13,
Chalmers University of Technology
and Göteborg University, April 2005.
http://www.cs.chalmers.se/

~aaskarov/jifpoker/as05.pdf.

[BB03] D. Brumley and D. Boneh. Remote tim-
ing attacks are practical. InProceedings
of the 12th Usenix Security Symposium,
August 2003.

[CM04] Stephen Chong and Andrew C. Myers.
Security policies for downgrading. In
Proceedings of the 11th ACM Conference

on Computer and Communications Secu-
rity. ACM, Oct 2004.

[DD77] D. E. Denning and P. J. Denning. Certi-
fication of programs for secure informa-
tion flow. Comm. of the ACM, 20(7):504–
513, July 1977.

[DPHW02] Alessandra Di Pierro, Chris Hankin, and
Herbert Wiklicky. Approximate non-
interference. InProc. of the IEEE
Computer Security Foundations Work-
shop, pages 1–17. IEEE Copmuter Soci-
ety Press, 2002.

[Fen73] J. S. Fenton.Information Protection Sys-
tems. PhD thesis, University of Cam-
bridge, Cambridge, England, 1973.

[Fen74] J. S. Fenton. Memoryless subsys-
tems.Computing J., 17(2):143–147, May
1974.

[GM82] J. A. Goguen and J. Meseguer. Secu-
rity policies and security models. In
Proc. IEEE Symp. on Security and Pri-
vacy, pages 11–20, April 1982.

[KSRW04] Tadayoshi Kohno, Adam Stubblefield,
Aviel D. Rubin, and Dan S. Wallach.
Analysis of an electronic voting system.
In IEEE Symposium on Security and Pri-
vacy, pages 27–. IEEE Computer Soci-
ety, 2004.

[Lau03] Peeter Laud. Handling encryption in
analyses for secure information flow. In
Pierpaolo Degano, editor,Proceedings of
the 12th European Symposium on Pro-
gramming, ESOP 2003, Programming
Languages and Systems, pages 159–173,
Warsaw, Poland, April 2003.

[LB73] L. J. LaPadula and D. E. Bell. Se-
cure computer systems: A mathemati-
cal model. Technical Report MTR-2547,
Vol. 2, MITRE Corp., Bedford, MA,
1973. Reprinted inJ. of Computer Secu-
rity, vol. 4, no. 2–3, pp. 239–263, 1996.

16

[Low02] Gavin Lowe. Quantifying information
flow. In Proc. of the IEEE Computer Se-
curity Foundations Workshop, pages 18–
31. IEEE Computer Society Press, 2002.

[LZ05] Peng Li and Steve Zdancewic. Down-
grading policies and relaxed noninterfer-
ence. InProceedings of the ACM Confer-
ence on Principles in Programming Lan-
guages (POPL05), January 2005. to ap-
pear.

[ML00] Andrew C. Myers and Barbara Liskov.
Protecting privacy using the decentral-
ized label model.ACM Transactions on
Software Engineering and Methodology,
9(4):410–442, 2000.

[MNZZ01] A. C. Myers, N. Nystrom, L. Zheng,
and S. Zdancewic. Jif: Java in-
formation flow. Software release.
http://www.cs.cornell.edu/jif, July 2001.

[MS03] H. Mantel and A. Sabelfeld. A unify-
ing approach to the security of distributed
and multi-threaded programs.J. Com-
puter Security, 11(4):615–676, 2003.

[MSZ04] Andrew C. Myers, Andrei Sabelfeld, and
Steve Zdancewic. Enforcing robust de-
classification. InProceedings of the
17th IEEE Computer Security Founda-
tions Workshop, pages 172–186, Pacific
Grove, California, June 2004.

[MVO96] Alfred J. Menezes, Scott A. Vanstone,
and Paul C. Van Oorschot.Handbook of
Applied Cryptography. CRC Press, Inc.,
Boca Raton, FL, USA, 1996.

[Mye99a] A. C. Myers. JFlow: Practical mostly-
static information flow control. InProc.
ACM Symp. on Principles of Program-
ming Languages, pages 228–241, Jan-
uary 1999.

[Mye99b] Andrew C. Myers. Mostly-static decen-
tralized information flow control. Tech-
nical Report MIT/LCS/TR-783, Mas-
sachussetts Institute of Technology, Uni-

versity of Cambridge, January 1999.
Ph.D. thesis.

[NCM03] Nathaniel Nystrom, Michael R. Clark-
son, and Andrew C. Myers. Polyglot: An
extensible compiler framework for java.
In Proc. 12th International Conference
on Compiler Construction, number 2622
in Lecture Notes in Computer Science,
pages 138–152, Warsaw, Poland, April
2003.

[oHotS03] Department of Health and Human Ser-
vices Office of the Secretary. Health
insurance reform: Security standards;
final rule. Federal Register, Febru-
ary 2003. http://www.cms.hhs.

gov/hipaa/hipaa2/regulations/

security/03-3877.pdf. Consider
statute 164.312(e)(1) especially.

[Pie02] Benjamin C. Pierce.Types and Program-
ming Languages. MIT Press, Cambridge,
MA, USA, 2002.

[PS02] F. Pottier and V. Simonet. Informa-
tion flow inference for ML. InProc.
ACM Symp. on Principles of Program-
ming Languages, pages 319–330, Jan-
uary 2002.

[RG99] A. W. Roscoe and M. H. Goldsmith.
What is intransitive noninterference? In
CSFW, pages 228–238, 1999.

[Sha49] C. E. Shannon. Communication theory
of secrecy systems.Bell Sys. Tech. J.,
28(4):656–715, 1949.

[Sim03] Vincent Simonet. The Flow Caml Sys-
tem: documentation and user’s man-
ual. Technical Report 0282, Institut
National de Recherche en Informatique
et en Automatique (INRIA), July 2003.
c©INRIA.

[SM03a] Andrei Sabelfeld and Andrew Myers.
Language-based information-flow secu-
rity. IEEE Journal on Selected Ar-
eas in Communications, 21(1):5–19, Jan-
uary 2003. This is a survey article on

17

language-based techniques for the speci-
fication and enforcement of confidential-
ity properties.

[SM03b] Andrei Sabelfeld and Andrew Myers.
A model for delimited information re-
lease. InProceedings of the 2003 Inter-
national Symposium on Software Secu-
rity (ISSS’03), Tokyo, Japan, November
2003.

[SP01] E. Sumii and B. Pierce. Logical relations
for encryption. InProc. IEEE Computer
Security Foundations Workshop, pages
256–269, June 2001.

[SS05] Andrei Sabelfeld and David Sands. Di-
mensions and principles of declassifica-
tion. In Proceedings of the IEEE Com-
puter Security Foundations Workshop,
Aix-en-Provence, France, June 2005.

[SV98] G. Smith and D. Volpano. Secure infor-
mation flow in a multi-threaded impera-
tive language. InProc. ACM Symp. on
Principles of Programming Languages,
pages 355–364, January 1998.

[Vol00] Dennis M. Volpano. Secure introduction
of one-way functions. InCSFW, pages
246–254, 2000.

[VS00] Dennis M. Volpano and Geoffrey Smith.
Verifying secrets and relative secrecy. In
POPL, pages 268–276, 2000.

[VSI96] D. Volpano, G. Smith, and C. Irvine. A
sound type system for secure flow analy-
sis. J. Computer Security, 4(3):167–187,
1996.

[Zda02] S. Zdancewic.Programming Languages
for Information Security. PhD thesis,
Cornell University, July 2002.

[Zda03] Steve Zdancewic. A type system for ro-
bust declassification. InMathematical
Foundations of Programming Semantics
(MFPS XIX), Montreal, Canada, March
2003.

[Zda04] Steve Zdancewic. Challenges in
information-flow security. InProceed-
ings of the First International Workshop
on Programming Language Interference
and Dependence (PLID), Verona, Italy,
August 2004.

[ZM01] S. Zdancewic and A. C. Myers. Robust
declassification. InProc. IEEE Computer
Security Foundations Workshop, pages
15–23, June 2001.

18

Appendix A

t � t
(ST-REFL)

t1 � t2 t2 � t3
t1 � t3

(ST-TRANS)

s′1 � s1 s2 � s′2
s1 → s2 � s′1 → s′2

(ST-FUN)

s1 � s′1 s2 � s′2
s1 × s2 � s′1 × s′2

(ST-PROD)

t � t′ ` v `′

t` � t′`′
(ST-SLAB)

Figure 12: Subtyping Rules

The full typing rules, subtyping judgement, and op-
erational semantics, and subtyping are given in Figure
10, Figure 12, and Figure 11 respectively. The full
definition of the≈ζ relation is given in Figure 13. The
map π : b → ι assigns basic values to their basic
types, i.e.π(3) = int, π(true) = bool.

Theorem A.1 (Substitution). If Γ ` e : s and Γ `
γ1 ≈ζ γ2, thenγ1(e) ≈ζ γ2(e) : s.

Proof. Proof by induction on the size of the typing
derivation.

Case (TP-PROD):

We have

Γ ` 〈e1, e2〉 : (s1 × s2)`

where` = lvl(s1) t lvl(s2). We have the derivations

Γ ` e1 : s1 Γ ` e2 : s2

Applying induction to these smaller derivations gives
us

γ1(e1) ≈ζ γ2(e1) : s1 γ1(e2) ≈ζ γ2(e2) : s2

and thus we have the evaluations

γ1(e1) ⇓ v1 γ2(e1) ⇓ v2

γ1(e2) ⇓ w1 γ2(e2) ⇓ w2

and the equivalences

v1 ≈ζ v2 : s1 w1 ≈ζ w2 : s2

Supposè v ζ: then lvl(s1) v ζ and lvl(s2) v ζ,
and by the above value equivalences we have

〈v1, w1〉 ≈ζ 〈v2, w2〉 : (s1 × s2)`

and thus the expression equivalence

〈γ1(e1), γ1(e2)〉 ≈ζ 〈γ2(e1), γ2(e2)〉 : (s1 × s2)`

This is the required result.

Case (TP-FST):

Suppose we haveΓ ` fst(e) : s1 t ` using the
(TP-FST) rule. Then we have the derivation

Γ ` e : (s1 × s2)`

Apply induction to receive the equivalence

γ1(e) ≈ζ γ2(e) : (s1 × s2)`

We thus have the evaluations

γ1(e) ⇓ v γ2(e) ⇓ w

with
v ≈ζ w : (s1 × s2)`

Thus we have

v ≡ 〈v1, w1〉 w ≡ 〈v2, w2〉

If ` 6v ζ, thenlvl(s1) t ` 6v ζ and so the values are
related at the proper security level. Otherwise` v ζ,
and the following equivalences hold.

v1 ≈ζ v2 : s1 w1 ≈ζ w2 : s2

By Lemma 5.7,

v1 ≈ζ v2 : lvl(s1) t `

We thus have

γ1(fst(e)) ≈ζ γ2(fst(e)) : lvl(s1) t `

This is the required result.

Case (TP-SND):

19

The proof of this case is symmetric to the proof for
(TP-FST).

Case (TP-IFTHEN):

SupposeΓ ` if e1 then e2 elsee3 : s: by inversion
we have the derivation

Γ ` e1 : bool`

and the derivations

Γ ` e2 : s Γ ` e3 : s

Apply induction to the first derivation to receive

γ1(e1) ≈ζ γ2(e1) : bool`

We then have the evaluations

γ1(e1) ⇓ v1 γ2(e1) ⇓ v2

and the equivalence

v1 ≈ζ v2 : bool`

If ` 6v ζ, then the if-then expressions are related
by definition. Otherwise asv1 andv2 are equivalent
at a basic type and̀ v ζ, thenv1 = v2 and so the
same evaluation rule applies to evaluating the entire
if-then expression. Assume without loss of generality
that the(EV-IF1) rule applies: then apply induction to
the typing derivation ofe2 to receive

γ1(e2) ≈ζ γ2(e2) : s

We thus have

γ1(e2) ⇓ v′1 γ2(e2) ⇓ v′2

and the equivalence

v′1 ≈ζ v′2 : s

By Lemma 5.7,

v′1 ≈ζ v′2 : s t `

As this is the result of the evaluation of the entire if
statement, we have:

γ1(if e1 thene2 elsee3) ≈ζ γ2(if e1 thene2 elsee3) : st`

This is the required result.

Case (TP-LAM):

We haveΓ ` (λx.e)l : (s1 → s)`.
Supposev1 ≈ζ v2 : s1: we must showe[v1/x] ≈ζ

e[v2/x] : s. If ` 6v ζ this holds as the expressions type
correctly: thus, assumèv ζ. As Γ ` γ1 ≈ζ γ2, we
have

Γ[x : s1] ` γ1{x 7→ v1} ≈ζ γ2{x 7→ v2}

By induction on the typing derivation

Γ[x : s1] ` e : s

we then have the equivalence

γ1{x 7→ v1}(e) ≈ζ γ2{x 7→ v2}(e) : s t `

becausex 6∈ dom(Γ) we can rewrite this as

γ1(e[v1/x]) ≈ζ γ2(e[v2/x]) : s t `

and thus

γ1((λx.e)`) ≈ζ γ2((λx.e)`) : s t `

This is the required result.

Case (TP-APP):

We haveΓ ` e1 e2 : s t ` and so we have the
deductions

Γ ` e1 : (s1 → s)` Γ ` e2 : s1

Apply induction to both of these smaller derivations
the receive the equivalences

γ1(e1) ≈ζ γ2(e1) : (s1 → s)` γ1(e2) ≈ζ γ2(e2) : s1

We thus have the evaluations

γ1(e1) ⇓ (λx1.e
′
1)` γ2(e1) ⇓ (λx2.e

′
2)`

γ1(e2) ⇓ v1 γ1(e2) ⇓ v2

and the equivalences

(λx1.e
′
1)` ≈ζ (λx2.e

′
2)` : (s1 → s)` v1 ≈ζ v2 : s1

By the definition of≈ζ for function types, we have

e′1[v1/x1] ≈ζ e′2[v2/x2] : s t `

20

and thus

e′1[v1/x1] ⇓ v′1 e′2[v2/x2] ⇓ v′2

and so
γ1(e1 e2) ≈ζ γ2(e1 e2) : s t `

This is the required result.

Case (TP-SUB):

This case follows directly from Lemma 5.7.

Appendix B

To demonstrate our Jif extension, we have developed a
class which performs DES encryption and decryption.
Theencryptmethod in theDES object is marked with
a declassFor constraint to indicate that it is trusted
to encrypt the data of a given principal. The code is
given in Figure 14.

21

π(b`) = ι`
Γ ` b : ι

(TP-BVAL)
Γ(x) = s

Γ ` x : s
(TP-VAR)

Γ ` e1 : s1 Γ ` e1 : s2 ` = lvl(s1) t lvl(s2)

Γ ` 〈e1, e2〉 : (s1 × s2)`
(TP-PROD)

Γ ` e : (s1 × s2)`
Γ ` fst(e) : s1 t `

(TP-FST)
Γ ` e : (s1 × s2)`
Γ ` snd(e) : s2 t `

(TP-SND)

Γ ` e1 : bool`
Γ ` e2 : s Γ ` e3 : s

Γ ` if e1 then e2 elsee3 : s t `
(TP-IFTHEN)

Γ[x : s1] ` e : s x 6∈ dom(Γ)

Γ ` (λx.e)` : (s1 → s)`
(TP-LAM)

Γ ` e1 : (s1 → s)`
Γ ` e2 : s1

Γ ` e1 e2 : s t `
(TP-APP)

Γ ` e : s1

type(F) = (s′ → s)`F

s1 v s′ s1 6v `F

Γ ` F (e) : s t lvl(s1)
(TP-TRANS1)

Γ ` e : s1

type(F) = (s′ → s)`F

s1 v s′ s1 v `F

Γ ` F (e) : s u ⊥
(TP-TRANS2)

Γ ` e : s s � s′

Γ ` e : s′
(TP-SUB)

Figure 10: Typing Rules forλF
sec

e1 ⇓ (λx.e)`
e2 ⇓ v′ e[v′/x] ⇓ v

e1 e2 ⇓ v
(EV-APP)

e1 ⇓ v1 e2 ⇓ v2

〈e1, e2〉 ⇓ 〈v1, v2〉
(EV-PROD)

e ⇓ 〈v, v1〉

fst(e) ⇓ v
(EV-FST)

e ⇓ 〈v1, v〉

snd(e) ⇓ v
(EV-SND)

e1 ⇓ true e2 ⇓ v

if e1 then e2 elsee3 ⇓ v
(EV-IF1)

e1 ⇓ false e3 ⇓ v

if e1 then e2 elsee3 ⇓ v
(EV-IF2)

e ⇓ v

F (e) ⇓ F (v)
(EV-ORAC)

Figure 11: Evaluation Rules forλF
sec

22

v1 ≈ζ v2 : ı` ≡def for i ∈ {1, 2}, ` vi : ı and` v ζ impliesv1 = v2

(λx1.e1)` ≈ζ (λx2.e2)` : (s1 → s2)` ≡def for i ∈ {1, 2}, ` (λxi.ei)` : (s1 → s2)` and

` v ζ implies(∀v′1 ≈ζ v′2 : s1 (e1[v
′
1/x1] ≈ζ e2[v

′
2/x2] : s2 t `)

〈v1, w1〉 ≈ζ 〈v2, w2〉 : (s1 × s2)` ≡def for i ∈ {1, 2}, ` 〈vi, wi〉 : (s1 × s2)` and

` v ζ impliesv1 ≈ζ v2 : s1 andw1 ≈ζ w2 : s2

F (v1) ≈ζ F (v2) : t` ≡def for i ∈ {1, 2}, ` F (vi) : t` andtype(F) = ((t1)`0 → (t)`0)`F

and` v ζ & `F v ζ impliesv1 ≈ζ v2 : (t1)`Ft`

Figure 13: Definition of the≈ζ Relation

23

public class DES [principal P] authority(DESprin)

{

static public Key{P:} getNewKey()

throws NoSuchAlgorithmException, NullPointerException

{

return KeyGenerator.getInstance("DES").generateKey();

}

static public Ciphertext{} encrypt(Key{P:} key, String{P:} s)

where declassFor(DESprin,P)

{

Ciphertext{P:} ciphertext = null;

try {

Cipher{P:} desCipher = Cipher.getInstance("DES/CBC/PKCS5Padding");

desCipher.init(Cipher.ENCRYPT_MODE,key);

final byte{P:}[]{P:} input = s.getBytes();

final byte{P:}[]{P:} encrypted = desCipher.doFinal(input);

ciphertext = new Ciphertext(new String(encrypted),

new String(desCipher.getIV()));

}

catch (Exception e) {}

return ciphertext;

}

static public String{P:} decrypt(Key{P:} key, Ciphertext{P:} ciph)

throws (InvalidKeyException{P:}, IllegalBlockSizeException,

BadPaddingException,

NoSuchPaddingException, InvalidAlgorithmParameterException,

NoSuchAlgorithmException, NullPointerException)

{

Cipher{P:} desCipher = Cipher.getInstance("DES/CBC/PKCS5Padding");

desCipher.init(Cipher.DECRYPT_MODE,

key,

new IvParameterSpec(ciph.iv.getBytes()));

byte{P:}[]{P:} encrypted = ciph.encText.getBytes();

String{P:} output = new String(desCipher.doFinal(encrypted));

return output;

}

}

Figure 14: Jif code for a DES class in whichencrypt is trusted to declassify data.

24

