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Abstract timing attacks [BB03]). Simply put, it is infeasible to

understand all information flows present in any non-
Security-typed languages are powerful tools for protrvial application without automated assistance.
ably enforcing noninterference. Real computing sys-A promising approach to solving the confidentiality
tems, however, often intentionally violate noninterfeproblem is to build systems that enforce information
ence by deliberately releasing (or declassifying) senfliew security. In such systems, data is tagged with a
tive information. These systems frequently trust crygecurity level The system then enforces the property
tographic functions to achieve declassification whitgf noninterference data tagged with a high security
still maintaining confidentiality. We introduce the nolevel may not flow to low security channels. Manda-
tion of trusted functions that implicitly act as declasory access control systems enforce noninterference
sifiers within a security-typed language. Proofs of ti®ynamically by mediating sensitive operations (e.g.,
new language’s soundness and its enforcement ofyatem calls) via an external monitor [Fen73, Fen74].
weakened form of noninterference are given. Addtonitor-based systems have historically been ham-
tionally, we implement trusted functions used for dpered by performance overhead and their limited abil-
classification in the Jif language. This representsity to track implicit information flows [DD77]. More
step forward in making security-typed languages matecently, researchers have sought to use programming
practical for use in real systems. language techniques to enforce noninterference stati-

cally. In such systems, a type checker is augmented to

track information about data security levels, treating
1 Introduction illegal information flows as a type error.

Unfortunately, noninterference is too restrictive for

Data confidentiality is a principal element of secur@any common applications. Consider a password
systems design. However, comprehensive solutiarigecker that compares a low-security guess with a
remain surprisingly elusive: massive data comprbigh security password and releases a single bit about
mises have become commonplace, and the resultihg high security password (i.e., whether the guess
costs are in the billions of dollars. Regulatory bods correct). This violates pure nointerference. Like-
ies are responding to this threat, but currently provisidse, when high-security plaintext is encrypted and
only punitive, negative incentives [oHotS03]; they deent over a low-security channel, some information,
not require provable security guarantees. Moreovegspite how minuscule, is leaked. To handle these and
the effectiveness of the often ad hoc certification prother legitimate, intentional releases of high security
cesses currently performed on critical systems is quéata, practical security-typed languages must include
tionable [KSRWO04]. This is not surprising as tha mechanism fodeclassification
sources of information leakage can be quite subtleThe problem is that existing declassification mech-
(consider the slow leakage of data made possible doyisms do not distinguish between leaking only small



amounts of information (as in the above example®y the important properties of our language, namely
and leaking unlimited amounts of information. Tgoundness and noninterference modulo trusted func-
address this problem, previous approaches [CM@#ns. In Section 6, we describe our extension to the
LZ05] have sought to provide a powerful, generdif language with a constraint which marks functions
theoretical framework for characterizing the wayass being one-way and trusted for declassification. We
that declassification may release information. Thediscuss general issues associated with our technique
frameworks have not been implemented. Our wonk Section 7. Section 8 presents related work. We
approaches the problem from a new angle. We mat@nclude in Section 9.

no attempt to provide such a general theoretical frame-

work; we believe that declassification is most often

found in a few, specific forms. In particular, recenp A Motivating Example
evidence suggests that the majority of cases in which

declas_sificatic_)n is needed involve the use of cryp t/R_security-type system extends standard types with
graphic functions [AS05]. Furthermore, by focusin ecurity-label annotations. In the following example,

only on this specific area of declassification, we are ~ . .
. we give code that could be run by Alice to send a
able to provide not only proofs of correctness and se-

. . o ) sdecret message to Bob over a public channel. Here,
curity, but also an implementation in a security-type . . . . .
language a two-point lattice of security labels is used with

; . secret being at a higher security level thanblic?

In this paper, we extend security-typed languagges . s

. . . Writtenpublic C secret).
with trusted declassification functionsThese func-
tions can declassify data for principals that trust them.
This language device is used to formalize the rela’
tionship between one-way functions and noninterfer-
ence. Trusted functions become implicit declassifica- - . .
tion mechanisms, obviating the need for explicit pro-Strm%{SGfret} msg = "Attack at dawn.";
grammer declassification in these cases. We make tfighd ("Bob",msg) ;
following contributions in this paper:

oid send(String{public} address,
String{public} message);

In this codemsg is tagged as secret data by labeling its

e The simple security-typed languagé€, is for- type with{secret}. The prototype given here for the
mulated and illustrated\”. . supports a notion send function indicates thasend requires its inputs
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of trusted declassificatigrallowing trusted func- to be public. This prototype is fitting, becausend is
tions to declassify private data. meant to be a function which sends a message over a

. ublic channel.
e A proof of noninterference modulo trusted funcp ) , ) )
If executed as is, this code would violate nonin-

tionsfor A7 is given. L )
terference, because Alice is attempting to send secret
e We implement the language extensions in the ¢ita on a public channel. Consequently, in a security-
compiler [MNZZ01], a security-typed variant okyped language, the type-checker will flag this infor-
Java. mation leak, becausssg's security level is not as
low as the corresponding formal parameterstmd
The rest of the paper is structured as follows. Wgecret 7 public). Thus this program is disallowed
begin in the following section by illustrating type sepy the compiler.
curity, declassification, and our approach via an ex'lntuitively, we should be able to fix this code by

ample. Section 3 gives high-level descriptions of trﬁ%ing RSA to encrypt the message with Bob's public
important theoretical constructs later defined formal%y' Consider the following:

in Section 4. Also included in Section 3 is a care-

ful description of the properties of cryptography we 1In Jif, public is denoted a}. Mathematically, public is de-

utilize, as well as our assumptions about the adv@fied |, while the most secret values are denoted aslere we
sary we model. Section 5 gives theorems and proafg “public” and “secret” for ease of reading.
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void send(String{public} address, String{public}

String{public} message) ; RSAencrypt (String{secret} plaintext,
e Key{public} pubKey)
String{secret} msg = "Attack at dawn."; where declassFor (RSA,secret);
Key{public} bKey = PKI.getPubKey("Bob");
send ("Bob" ,RSAencrypt (msg,bKey)) ; void send(String{public} address,

String{public} message);

In fact, this may not fix the problem; it still de- éé;ing{secret} msg = "Attack at dawn.";

pends on the security annotations in the prototype f&fey {public} bKey = PKI.getPubKey("Bob");
RSAencrypt. We would like this prototype to be send("Bob" ,RSAencrypt (msg,bKey)) ;

In this code fragment, a new constraint is intro-

String{public} duced which associates a security lewsA with
RSAencrypt (String{secret} plaintext, RSAencrypt. If secret trustsRSA (secret T RSA),
Key{public} pubKey); then this function can be used to declassibtret

data. The remainder of the paper discusses our analy-
sis and implementation of this approach.
This prototype asserts theSAencrypt produces a

public output given asecret input. The only way a : F
function could be annotated in this way is if it eithe‘?’ Introduction to )\860

1) did not involve its secret inpuilaintext in the \ye highlight the common features in security-typed
computatp_n O]_c the Qutput_m any way, or 2)irit haﬁ]languages and introduce, ., a simple language with
a declassification hidden in the function body. Thgntions that can be used for declassification. First,

former cannot be true here becagdeintext IS 0b- \ g give a brief description of the adversary and the
viously used to produce the output. security model.

This is because, strictly speaking, RSA encryption

doesreveal information about its input. Suppose that Cryptography and Trusted Declassifica-
msg were declared as: tion

It is important to consider which functions are appro-
String{Alice} msg = "Lie in wait."; priate to trust as declassification mechanisms. We ar-

gue onlyone-way functionsan be safely used for de-

classification. A functionf is one-way if for essen-
In this case, a different ciphertext will be sent to Bo[l;h”y all inputsz, computingf (z) givenz is easy, but
and an observgr will be able to tell th_e_difference bﬁhding somer given f(z) is computationally infeasi-
tween the original code and the modified code, evgp [MVOO6]. It is precisely this feature that makes
though they cannot determine what either messaf8ny forms of cryptography useful. For example,
means. This violates pure noninterference: a IOy ysing encryption, it is assumed that the adversary
security observer sees two different low-level outputg, |earn little about the plaintext from the ciphertext
for runs on two different high-level inputs. alone. Our work seeks to exploit this property within

This contradicts a basic security assumption—asecurity-typed programming language.

practical systems with computationally bounded ad-This work assumes a computationally bounded ad-
versaries, one-way functions reveal no informatiorersary. Because such an adversary cannot recover
about their inputs. To capitalize on this property, waecret inputs from the outputs of a one-way function,
introduce a new optiorRSAencrypt can be assignedthese functions may be trusted to declassify data. Con-
a principal,RSA, and marked as a trusted declassificaequently, for ease of exposition, the following sec-
tion function. This gives us the following secure codéions treat one-way functions as though they expose
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3.3 The Language\’,

Sec

T
Asec IS @ Simple security-typed language; it has expres-
sions for function abstraction, application, condition-

Alice Bob Connie als, and primitives operating on integer and boolean

\ / values. It is a purely functional language: lambda
functions are first-class values and there is no notion
L of program state.
)\fec IS A €Xtended withiransformation functions
Figure 1: An example security lattice Transformation functions are a generalization of prim-
itives such as addition or multiplication: they trans-
form one value into another. Each transformation
no information, which is clearly not the caseThe function F"is associated with a security levét, the
amount of information a cryptographic algorithm ex{PPer bound on the data théits able to declassify. To
poses is a feature of the algorithm itself and its sec@r knowledge, this is the first time that named func-
rity parameters. We briefly discuss the implications §Pns are associated with a level in the security policy

this in Section 7. |attice.
Transformation functions can model important op-

erations such as addition, equality testing, public-key
encryption and decryption, hashing, and so on. It have
would be simple to add a new encryption type con-

. : structor instead; a value of typenc would then be an
In asecurity-typed language&alues are assigned a se-

. . .~ encrypted value of typé However, this restricts the
curity level. Security levels are taken fronsacurity . .

: _ . . . se of encrypted values. For example, an arithmetic
lattice £: a static encoding of access control policy.

I, e £, we write/ C ¢ to indicate that’ is at least unction on integers has typet x int — nt. it could
as secure ok not also operate on encrypted values. It is often neces-

i Y i ] ~sary to perform operations on encrypted values, such
There is a “write-up, read-down” relationship 0fg sending them over public channels, writing them
data in the security lattice. Anyone at levetan read g ;; 1o files, or exploiting homomorphic properties of

data that is stored at a lev€IC /. Similarly, any data yhe encryption. We therefore choose a more general
stored at level can always be made more secure toa?)proach.

level ¢/, wheret C '. This is thex-property [LB73]. Some of these functions can be used for declassi-

An example security lattice is given in Figure Ification of high-security data, e.g. encryption. The
The highest security level i§; none of Alice, Bob, or addition function reveals too much information about
Connie can view data stored atsecurity. The lowest its inputs to be a safe declassifier, while the result of
security level in the lattice is; anyone can read. 3 public-key decryption should be kept secret. Equal-
data. As there is nQ relationship betweerlice and ity testing is a transformational function that can be
Bob, Alice cannot read Bob’s data nor vice versa. eijther trusted or not, depending on whether a user

A security latticeC is ajoin semilattice for any two wishes to allow potentially dangerous information re-
levels?, ¢ € L, there is a security level LI ¢/ € £, lease [Vol0O].
where/ LI ¢’ is the least upper bound éfand/’. The  Let /r be the security level associated with If
least upper bound of two security levels is the loweAtice trusts a transformational functiof, the rela-
security level that is at least as secure as b@hd/¢’. tion Alice C /r holds in£. Figure 2 shows an exam-
Any two security levels have a lower bound)( but ple security policy, extending the simple lattice given
they do not necessarily have a greatest lower bouedrlier. Alice allows her data to be declassified af-
TheL relation is transitive: i¥ is at least as secure ager it passes through either an RSA or a DES encryp-
¢ (¢ C r)and/” is at least as secure &s(¢” C ¢'), tion function. Bob insists that his data can only be
then/ is at least as secure ét (¢ C ). declassified after public key operations, while Connie

3.2 The Security Lattice



(Ax.F(z))1 5
)

B

(Az.F(z))1 BUF(5)
5)
rsa_encrypt rsa_decrypt des_encrypt
l [F(5)[{F}=q4F jkvi2CV
) . q4F jkv12CV
Alice Bob Connie

/ Figure 3: An example two-step evaluationX,,.

plies to the languagg’. . after the operational seman-

Sec

Figure 2: An example security lattice with trusted ang.q are applied but before the reduction semantics are
untrusted functions invoked

Figure 3 provides an example evaluation. Suppose

does not allow her information to be declassified 4t iS an encryption function outputting the ciphertext

all. Wisely, none of the principals allow their data tg4F jkv12CV for the input value5. During the exe-

be declassified after being passed through a decrggtion of the progran = (Az.F(z)). 5, the oper-

tion function2 ational semantics first apply to the parts of the pro-
The above notion of trust becomes even more uggam that do not rely on transformation functions: in

ful when dealing with applications such as passwols case,(Az.F(z))L 5 | F(5). After everything

checking. Traditional noninterference does not alloiise has been evaluated, the reduction semantics are

information release with an equality test. In the la@Pplied, filling in the semantic meaning of the trans-
guage)”., users are able to specify with fine grafformation functions. The reduction semantics then

sec?

ularity which methods of information release are ayield [F'(5)]{F} = q4Fjkv12CV, and so the execu-

L

lowed. tion of the programP ultimately results in the string
q4Fjkv12CV.
N The operational semantics &f,,. first evaluates an
4 Evaluationin \” : : > Tvec
3 aluatio Asee expression to an intermediate state where values are

Lete be the expressionsa_encrypt(x), whererisa either basic values (integers, booleans), lambda func-
variable owned by a principal that trusts RSA encrypions, or the result of the application of a transforma-
tion to declassify her data. After substituting a valu®n function. Transformation functions as they occur
for z, the end result of computingis some ciphertext. in A, are designated byansformation function sym-
Even though two different ciphertexts look random faols the symbolF’, used in the operational semantics,
an observer, different values yield different resultingprresponds to the semantic functigh) used in the
ciphertexts; this violates pure noninterference. reduction semantics.
For this reason, evaluating an expressiondy. is
composed of two distinct steps. Theerational se- .
manzcsprovide a method of rlzducing the portions 04 Formal Definition of )\sfec
the program which do not rely on transformation func- o - P
tions, while thereduction semanticsvaluate transfor- Thg syntax Qf)‘sec Is given in Figure 4')‘86_0 |§'not a
mation functions. Our noninterference result then az)t_rlc't extension ofs..: we remoye the F’””?'“Ye op-
rationd from the language and introduce in its place
Though we can have transformation functions for both ean expression for applying transformation functions.
cryption and decryption inZ,.., our focus in this work is on func- )\ic also introduces product expressiohﬁ,, e2>’ and

tions trusted to serve as declassification mechanisms. aBsel . . .
fying the result of decrypted ciphertext would reveal thigioel the usual _eXpreSS_IO_n_S for deallng with thdst(e) and
message: for our purposes then, decryption is not an inlegesSNd(e). Binary primitives used in\. are then added

operation. to AZ . as transformation functions. For example, the

sec




security types raised to be at the least security level

Security Levels ¢ € £ above bothivi(s) and? while sr_L is the security type

Security Types s ::= ?5 s fully exposed to the public.

Base Types L= int|bool . . A

Types P P The reduction semantics are given in Figure 5. The
Base Values b:i— 0|1] --- |true|false tbrar:rs]formatlor;' fo[nctlofn syrr;bcﬂ’fls gl'\g;ln I;nef;:nlng
values vim by la| Qe | y the semantic transformation functi ach se-

mantic transformation functioft is a partial function
<U17U2> |F(U) .y /
vleres| (e, e | on the set of values; ffype(F) = (t;, — tu)e,, then
! L F is a function from values of typé to values of type
fst(e) | snd(e) | F(e) : ) ) :
t. O is a set of semantic transformation functiofs
The reduction rulgv']O = v gives meaning to trans-
Figure 4: Syntax fon?,, formation function symbols in the valué.
The typing rules for\”,, are the same as the typ-
ing rules for) ... for their common syntactic construc-
Asec EXPressior? 4 3 corresponds to tha’”, . expres- tions (if statements, function abstraction and applica-
sion+((2, 3)), where+ is a transformation functiontions, and so on). Contexisare maps from variables
symbol representing the semantic addition function &m security types: in an expressien the contextl’

integers. gives meaning to free variablesdnThe typing judge-

Transformation function symbols are denotedthy Mment then id” I- e : s, read as “under conteXt, ex-
The type of a transformation function symbol is giveRressione has security type.” In Section 5 we will
by type(F) = ((t')e — ()¢)ep. The typelr is S€€ that this implies thatevaluates under the opera-
the security level of the transformation function syniional semantics to a valueand- v : s.
bol F, and is the upper bound on information tdat The two new important typing rules are
is trusted to declassify. Transformation functions &iTP-TRANS1) and (TP-TRANS2).  (TP-TRANSIL)
ways take values at one security levélto another states that if a transformation function is not trusted
value at the same security level (but not necessaitfydeclassify data at thel(s;) security level, then
the same type). Declassification then results from ti& application can only raise the security level of the
context that the transformation function is used in afigsult. On the other hand, if it is trusted to declassify
is not reflected by the function’s type. A transformadata at that level(TpP-TRANS2) allows the result to
tion function can then be used in two different locde declassified to the 3
tions, serving as a declassification method in the firstin both cases, the type of the argument need only
and not in the second; this is more general than wile a subtype of the argument that the transformation
be later required by our implementation. function expects. This adds a form of label poly-
We assume that the return type of the transfornf®0rphism to these transformation functions. For ex-
tion function is a base type suchias or bool. We do @mple, there may be one encryption functibrwith
this to ensure that we can always reduce the result dpge(F’) = (intt — int7),,. Letv be a value with
transformation function. If we allow expressions such v : intaiice. If Alice trusts F’ for declassification,
asfst(F(e)), then values in our language no longdhenF'(v) can be given the security typet, ; other-
can be identified solely by their syntactic form. WWise F'(v) has the security typatr. F' can also be
restrict the return type to be a base type; this limitatig#pPlied to a value of typ@tp,, Or anintconnie With
is reasonable as transformation functions are meanttg Same declassification behavior.
be a generalization of the notion of a primitive. The operational rul€ev-TRANS) evaluates the in-

The functionivi(s) is defined on labeled types asSide of the application of a transformation function.
lvl(ty) = ¢. The lattice operatiof is also extended _ _
%It may be useful for some functions to only declassify data

to security typess & £ if lvl(s) C {. Write s asty, to a certain security level for such applications as seqléting.

then the S_GCU”ty typel_.lﬁ’ is defined to beég,, while e do not consider this possibility, though we believe sush a
the security types M L is ¢, . Intuitively, s LI ¢’ is the extension would not be difficult.

Expressions

)
i
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(RED-BVAL) Phe:s
type(F) = (s' — s)q

[0 = (el (REDLAM) S Cs sl
[1]O =, [02]O =) ' Fe):sUlvl(sy)

[b]O = b

(TP-TRANSL)

RED-PROD
[[<U1,212>]]O = (vi,vé) ( ) ( F)l_ 6(3 /S1 )
type(F') = (s — s)¢
_ _ F
FeO [[U]]O = Vo f(’[)o) =v (RED'ORAC) sy s’ s C KF

[F(v)]O =1

TP-TRANS2
'FF(e):snL ( )

T'kFe:s s=<¢

Figure 5: Reduction Semantics (TP-suB)
Fke:s
el v
The important typing rules and operational semantics Fle) U F(v) (EV-TRANS)

are given in Figure 6.
The security lattice induces subtyping judgement§y e 6: Important Typing Rules and Operational Se-
on security types and normal types= s" andt < t'. - qiics
Write s ast, ands’ ast),: if s < ¢/, thent < ¢’ and
¢ C /. As usual, function types are contravariant and
product types are covariant [Pie02].slf< s’ and the Puts toe which are indistinguishable belog result
type derivatiorl I- e : s holds, then by th¢Tp-sus) In computations that are also indistinguishable below
rule we can construct the derivation e : . ¢. Our observers occupy a position in the security
Extending the theory ofZ_ to include state, anlattice. For example, an omniscient adversary might
operator for unbounded recursion, concurrency, a@écupy the levell in the lattice and thus be able ob-
message-passing would not be difficult; securitgerve all changes in data, no matter at what security
typed languages that incorporate these already exXR¥el- Any program using RSA encryption would then
However, some language features add new methyifate noninterference to such an adversary.
of exposing information. By focusing on a small core As we consider our adversary to be computation-
language, we are able to concentrate on the importatly bounded, they occupy a security legatot above
issues raised by placing transformation functions tie levels of one-way functions such as RSA or DES
the security lattice. encryption. Our adversary may be above the secu-
The typ|ng ru|eS, 0perati0na| SemantiCS, and Sl.m levels of transformation functions such as addi-

typing judgement for the full language’., are given tion, multiplication, equality testing. Noninterference
in Appendix A. modulo trusted functions holds for a program as long

as none of the transformation functions used for de-
) F classification is below the observer’s security leyel
5 Properties of A7, Note that if no transformation functions are used for

declassification, then pure noninterference holds.
We now demonstrate that a number of standard lan-

guage properties hold N We _first show that the 5.2 Language Properties

language issound i.e. a typing judgement implies

safe evaluation. We then show thatninterference Our language\’”, . has a few important properties. For
modulo trusted functionisolds. example, typing rules are invariant under variable sub-
stitutions and expressions that are given a security
type evaluate to values of the same type. These stan-
dard results show that the typing rules correctly corre-
The formal security semantics presume that an dapond with the operational semantics.

server is at security level. An expressiore is then A substitution~ is a finite map from variables to
noninterfering modulo trusted functioifany two in- values. A substitution is said to satisfy a type envi-

5.1 Properties of the Observer
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ronment ¢ = T) if v is a type-preserving substitu-Corollary 5.5 (Full Soundness).If - e : s and for
tion, meaning thaty assigns each variable a value advery transformation function symhbsl occurring in
the security type required dy. The notatiorry(e) is e, F € O and F is well-defined on the correct subset
short-hand for a simultaneous, capture-avoiding sudi-values as specified lype(F'), then there exists a
stitution. v" and av such thate || v and[v']O = v.

Definition 5.1. For ~ a substitution and" a type en-
vironment,y = T if dom(I") = dom(~) and for all
z € dom(I'), F () : I'(z). In this section, we give the formal definition of what
, , , it means for a program to be noninterfering. We then
The following results are easily proved by induc- r a prog . g. W
. show that if a program has been given a security-type
tion. . . : 2
judgement, then all evaluations of it are indistinguish-
Lemma 5.2 (Value Substitution). If T' I ¢ : s and able modulo the result of these transformation func-
~v | T thenk ~(e) : s. tions.
We define what it means for two values to be obser-

Proof. By induction on the shape of the typing derivarationally equivalent to an attacker. This is given by
tion. 0 the judgement; =~ vy : s, read v, is observation-

ally equivalent tas, at security types to an observer at

' The foIIowing theorem S'Fates that if' an eXpreSSi%curity levek.” We extend the definition o, from
is typable and its computation results in a value, thge\n for values of the form#(v) (the full definition of

Sec

the expression and the value have the same secu,gtéyfOr all values can be found in Appendix A). The
type. intuition is that if an observer at levelcan read both
Theorem 5.3 (Type Preservation).If - ¢ : s and ©f F(v1) and F'(v2) and(p C (, then the observer
el v, then- v : s. can sea; andwvs. If F'is a one-way function andlis

a computationally bounded observer, this corresponds
Proof. By induction on the shape of the typing derivao the idea that no information is released By
tion, using Lemma 5.2 for the application case. [

5.3 Security Properties

Definition 5.6 (Value Observational Equivalence).
Theorem 5.4 states that “well-typed programs dd(vi) ~¢ F(vz) : t, if the following hold:
not go wrong”. If we type an expression to a value,
then it will not get stuck during its evaluation at a type ® ™ £'(v1)  teandk F(vo) - 2
F i .
error. AsX;.. has no expression that would allow un- | type(F) = (e — (t)¢)en

bounded computation, if an expression is typed under
the empty context, it will evaluate to a value e (T ¢ and {p C ¢ impliesvy ~¢ va : (t)e, 10

Theorem 5.4 (Operational Soundness)If - e : s,  Subtyping interacts with observational equivalence
then there exists a such thate | v. in the expected way. If two values are equivalent at a

ity type, then th I ivalent at high
Proof. Again, by induction on the shape of the typ§ecurl y Ype, the Ihey are aiso equivaient at higher

: At ) . ecurity types.

ing derivation. Expressions always terminate as tﬁe y P

language has no unbounded computation, and expiesmma 5.7 (Subtyping). If v ~c vyt sands <
sions never get stuck since transformation functiofiseny, vy s

always return a value that has a basic type. O
Proof. Proof by induction on the structure of the

As an immediate corollary, the reduction semagalue. Suppose-(v;) ~¢ F(vz) : s. We show
tics interact with the operational semantics to give B(vy) ~¢ F(vg) : 5.
full soundness result. If is properly typed and the = SinceF(v;) ~; F(v2) : s, we have the judgements
transformation functions are well-behaved, then it has
a complete two-step evaluation as discussed above. FF(v1):s and F F(ve):s

8



By the rule(TP-suB), we then have the typings Proof. Proof proceeds by induction on the derivation
of I' F e : s. The two key cases are when the judge-
FF(v):s and F F(uvy):s ment has been made by either of the transformation
function rules.
Sinces < ¢/, Wl(s) C Wwi(s"). If lwi(s) £ ¢, then

lvl(s") Z ¢ and we are finished. Otherwise assume I'ke:s
{r C ¢. Then type(F) = (' — )¢y
siCs s1ZAp 1
TP-TRANS
v R Vg (t,)ZFulvl(s) L'k F(e):sUlvl(sy) ( )

I'be:s;
type(F) = (s" — s)ey.
siCs s Clp
'FF(e):snL

We then have

() eputoics) = ) epuiois) (TP-TRANS2)

The required result then follows by induction. [ In either case, apply induction to the derivatibri-

o , e : s1 to receive
The =~ relation is extended for expressions. Two

expressions are observationally equivalent if they 1(e) ~¢ ya(e) : s1

evaluate to observationally equivalent values.
By the definition of~, we have the evaluations

Definition 5.8 (Expression Observational Equiva-

lence). Two expressions;, s aree; ~ ey : s if yi(e) b v y2(e) I vo
e e :sandFey: s and the equivalence
e ¢ |l vy andesy || v V1 A U281

There are now three important security labels to keep

® V] "¢V S.
L=e track of.

Two substitutions are “related” above a security ., s the security level of the initial data, before

type ¢ in a contextl if both v, and~- define the vari- the t f tion h i H
ables in the domain df and their definitions look the lv;a(sze;ms ormation has been applied. Hére=

same to an observer sitting at levelFormally:

e /r is the security level of the function.
Definition 5.9 (Related Substitutions). Two substi-

tutions~; and~, are related above a security level ¢ (is the security level of the final data.

in a context’, writtenT' - v, ~ ,if: . .
N Write s; = (t1)g, ands’ = (t)p; sinces; C ¢/,

e v =Tandy =T t; C ¢’ and/; C ¢'. With this rewriting, we have
o forall x € dom(I'), 1 (x) =¢ 72(x) : T'(x) URSREGYIA

Two related substitutions - v; ~ s then are For noninterference to hold, we need to show

the result of switching data at a Ieve_l abaveAn at- F(vy) ~¢ F(vs) :
tacker should not be able to tell the difference between
applyingy; or 2 to a “secure” expression For the desired result to hold, we must show that ¢

' _ o and/p C ¢impliesv; ~¢ va : (t')ae,. We must then
Theorem 5.10 (Noninterfering Substitutions). If showg, C ¢ ¢5: then agty C ¢/, Lemma 5.7 gives



If the rule (TP-TRANSL) holds, we havé = ivi(sLl 6.1 The Jif programming language
lvl(sl)) = lvl(s (] 61) and/; C lvl(s (] 61) U/lg; thus
the result follows.

If instead the rule(TP-TRANS2) holds, we know
¢y C fp, and thusty C ¢ U ¢ and again the result
follows.

We then have

Jif is an object-oriented, strongly-typed language cap-
turing nearly a superset of Java. In Jif, the program-
mer must label types with security annotations. The
compiler uses these annotations during type-checking
to ensure noninterference.

The Decentralized Label Model (DLM) Types in
Jif are annotated with security labels based on the
DLM [MLOOQ]. Similar to work in mandatory access

and so control that tags data with complete access control
1 (F(€)) =¢ v2(F(e)) : te lists, the DLM allows for the virtual tagging of data
with owners-readers lists. Each label consists of a set
This is the required result. 0 of policies of the form{o:r;,rs,...,r,}, whereo

andr; are principals witho being the owner of the

The preceding theorem implies that noninterferengfaJIICy and ther; being authorized readers of the pol-

modulo trusted functions holds i As \F_is a ICy. Furthermore, a label can consist of multiple poli-

functional languaae. inouts o a ?Sc-ram a;gf en ies (allowing for multiple owners of a piece of data).
guage, inp prog 9 Ee an example,int{Alice:} i; declares anint

substitutions assigning values to free variables. If t . :
inputs for an expressionare indistinguishable :;1boveowne(j and readable only i ice (the owner is al-
P P 9 ays implicitly included in the reader list). The state-

e o oot g2t Charkio Dana st dechres
aeString which is owned byBob but also readable by
s Charlie andDana. Data may also be annotated with
multiple policies as inint{Alice:;Bob:} j;. The
) policy on j indicates that it is owned and readable by
6 Implementation bothAlice andBob. In Jif, when a variable is used in
a security label, it refers to its own label. Thus, using
A central motivation of this work was to make andstr as defined abovefloat{i;str} f; de-
security-typed languages more practical. We have iglares af1oat that is owned by boti1lice andBob

plemented our approach as an extension to Jif. Our @&d which can be read §harlie andDana.
tension consists of an annotation on functions which

associates each function with a principal and allow§|ective declassification Jif implementsselective
the function to declassify data for all other principalgeassification Principals in Jif are defined external

that trust that principal. _ to the program. Each one has a delegation set con-
We chose Jif because itis a full-scale secunty-typ@gning all the principals it trusts. This forms a run-

language implementation based on Java. The Offyie principal hierarchy. Each process maintains an
other existing full-featured security-typed language igthority set which contains principals from the run-
Flow Caml, an extension of the functional languaggne principal hierarchy. A process is only authorized
Objective Caml. Some features of Jif, such as the geclassify policies that are owned by principals in

extensible Polyglot framework with which it is builtjts authority set. Our language extension takes advan-
made it a more attractive target for our implemeRsge of this as described below.

tation. Furthermore, since Jif already has a genera
mechanism for declassification, we could Ieverage this4~]if does not provide support for inner classes or threads, be

. s . . use of the ways they complicate information flow analy3if.
to provide our more specialized mechanism. Fmal@described most completely by Myers [Mye99b] and a helpful

Jif's ability to use the Java class libraries allowed egsactical overview, along with expository examples, isegiby
ier integration of cryptography. Askarov and Sabelfeld [ASO5].
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Class parameterization Another feature in Jif 6.2 A language extension for cryptographic
which we utilize is class parameterization. A Jif class  declassification

can be parameterized by a principal or security label.

This means that a class may be defined once and th8f k€Y insight in our formal system is in assigning a
be instantiated at various security levels. For examppsincipal to each function and allowing cryptographic
we might want a/ector class which containsecret functions to be trusted for declassification by placing

data and anothefector class that containgublic them higher in the security lattice. In our implemen-
data. Without having to implement thector class tation, we only need to mark those functions which
multiple times, it could be parameterized with a Iab@f'” be trusted for declassification. All other func-

and then instantiated at different levels. In Jif, suchi@NS are presumed to be unsafe for declassification
class could be defined as and thus implicitly labeled as. Thus, our implemen-

tation serves to extend Jif with an additional optional
constraint which marks functions as being trusted for

public class Vector[principal P] declassification. This constraint assigns a principal to

{ . a function and places it in the security lattice by relat-
Object{P:}[]{P:} elements; ing it to some other existing principal. Corresponding

i to the formal system, the constraint also requires the

compiler to make certain security label checks. Fi-
Note that the member arraj ements has two labels. nally, the constraint relaxes noninterference, allowing
One is the label of th@bjects stored in the array.the return value of the function (which should be en-
The other is the label of the array itself. crypted data) to be public.

SinceVector has been parameterized byp can It was already possible to use cryptography in Jif
now be used throughout the body of the class to denBfor to our extension. Because Jif builds on Java,
a principal. This principal will be instantiated when adif programs can use the existing Java class libraries.
object of typevector is declared, as in the following The only stipulation is that the programmer must pro-

code, whereilice andBob are two principals. vide security-annotated prototypes (calldl signa-
tureg for each class, interface and method that has

been used. Methods may be markedasive to sig-

nal Jif that Java code will be provided elsewhere for
the body of this method. The signatures for these Java
methods must be written in a way that truly reflects the
information leaked by the method, because the signa-
ture cannot be automatically checked by Jif. Ideally,
Handling exceptions One thing which makes Jifclasses would be re-implemented in Jif to take advan-
particularly challenging for programming is hantage of Jif’s automatic type-checking.

dling the information leaks that occur through func- The primary Java class for cryptography is
tion termination, exceptions and side-effects. Fdre javax.crypto.Cipher class provided in
example, an encryption method that throws dhe Java Cryptography Extension (JCE). To
InvalidKeyException releases information aboutreate a new DES cipher in CBC mode, the
the key (which is secret data) both by throwing th&ipher.getInstance method is called with the
exception (indicating the key is invalid) and by nargument"DES/CBC/PKCS5Padding". The cipher’s
throwing the exception, i.e. by terminating normallynit method must then be called to configure it
(indicating the key is not invalid). For this reason, for either encryption or decryption. Finally, an
can be advantageous to catch exceptions and harmudfieryption or decryption may be performed using the
them locally in order to bound information leakagmethoddoFinal. The proper Jif signature for this
they might cause. This is the approach we have takerthod is given in Figure 7.

for our encryption function, allowing simpler integra- This signature indicates thabFinal takes eyte

tion of encryption for programmers using this class.array which is at some security level, designated as

Vector[Alice] vectori;
Vector [Bob] vector2;

11



public native byte{this;input}[]{this;input} doFinal(byte{input}[] input)
throws IllegalBlockSizeException, BadPaddingException;

Figure 7: Jif signature for théipher.doFinal method.

input. Furthermore, the elements of the array aization and build a DES class which is parameterized
also at the security levehput. The labelthis refers based on the data-owning principal as shown in Fig-
to the label of theCipher instance whos@oFinal ure 9.
method has been called. Thus, the encrypted outpuThis allows thesncrypt method to be invoked for
array is labeled{this;input} because it containsany desired principal as in the following code which
data that reveals information about both thigher encrypts and declassifies Bob’s data using Bob's key.
instance used to encrypt it and also theput array
which was encrypted. Key{Bob:} key = DES[Bob].getKey();

In addition to producing ciphertext, an encryption ~ String{Bob:} data;
in CBC mode also generates an initialization vector Ciphertext{} ciphertext =
which is needed for subsequent decryption. Our Jif DES [Bob] . encrypt (key,data) ;

Ciphertext class merely serves to package these tWorha sl code for the DES class is given in Ap-
outputs into a data structure as a single output from 'ﬁ@ndix B.

encryption function. _ _ _ A full implementation of the language and associ-
The §yntax of the function constraint we have intrd4aq documentation is available online at:
duced isdeclassFor(Principal, Principal). The
constraint  declassFor (CryptoPrin,DataPrin) htp://siis.cse.psu.edu/tools/infoflowljif/jifcryptatml
indicates that th€ryptoPrin is trusted to declassify
data owned bybataPrin. An example is given in 6.3
Figure 8. Although the methodncrypt takes as
input a key and data owned g ice (i.e., annotated Jif is built using the Polyglot extensible compiler fron-
with the label{Alice:}), the Ciphertext output tend framework for Java [NCMO3]. This framework is
is completely public (given a§}). This corresponds powerful and robust, allowing arbitrary extensions and
with the accepted notion that an encryption functiafeletions to the syntax of Java. Abstract syntax tree
can safely publicize the ciphertext of secret data. (AST) extensions and deletions can be given along
indicates thatAlice trusts this function to declas-with arbitrary additional passes over these ASTSs.
sify her data because she believes it will reveal noAn important challenge in implementing our ex-
information about it. tension was in determining how to handle the two
The stipulations on the use @feclassFor are principals CryptoPrin andDataPrin) involved in
the ones given in the formal semantics in Section thedeclassFor constraint. This required manipulat-
Namely, all inputs to the method must be owneddg the static and dynamic principal hierarchies in Jif
by the principalDataPrin (or principals that trust (which correspond to the security lattice in our for-
DataPrin) and DataPrin must trust the principal mal system). In addition to the runtime principal hi-
CryptoPrin. We have extended the Jif compiler terarchy described earlier, Jif also has a static princi-
check these conditions automatically and then to deal hierarchy which can be formed within a program
classify the return value of the method. Since Jif’'s séwrough inserting dynamic checks. Since the body
lective declassification requires a process to have soffthese dynamic checks will only be executed if the
ficient authority to declassify, th@eclassFor con- check succeeds at runtime, the body can be statically
straint also extends the authority set of the calling priype-checked using the assumption that the delegation
cess to include théryptoPrin principal. (or “acts-for”) relationship holds. In this way, a static
The encryption function given above is limited ifprincipal hierarchy is formed.
that it can only be used farlice. For real applica- The following code demonstrates how our DES
tions, we can take advantage of Jif's class parametdass would be used. In this example, a check

Implementation challenges
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static public Ciphertext{} encrypt(Key{Alice:} key,
String{Alice:} s)
where declassFor(DESprin,Alice);

Figure 8: An encryption method for Alice’s data.

public class DES [principal P] authority(DESprin)
{
static public Ciphertext{} encrypt(Key{P:} key, String{P:} s)
where declassFor(DESprin,P);

Figure 9: A parameterized encryption method.

will be made at runtime to ensure thatice trusts 7 Discussion

DESprin beforeAlice’s data may be encrypted and

declassified. If Alice does not trugiESprin, a 7.1 A Practical Relaxation of Noninterfer-
SecurityException is thrown. ence

As is true with any program using declassification, this
work depends on a relaxation of noninterference. Our
relaxation is minimal, however, as we only allow as
Ciphertext{} ciphertext = ml_Jch information as is'Ieaked by .trusted functions.
DES[Alice] .encrypt (key,data); With the n_otable ex_ceptlon_of o_ne—tlme pads, all one-
} ’ ’ way functions considered in this paper release some
information about the inputs [Sha49]. The amount
of information released is bounded by the algorithms’
security parameters and is assumed to be vanishingly
small. Ours is a general mechanism and hence not
_ ~ bound to any particular algorithm. The use of one-
The declassFor constraint ensures at compile img oy fnctions makes the application output inherently
that such aractsFor check has been made and thapject to cryptanalysis. This vulnerability is orthog-
the CryptoPrin is already established to be higheg,) 1o the present work. The lesson is that due cau-

thgn theDataPrin in the static. principal hierarchy.ion must be used in selecting and using cryptographic
This has the advantage of forcing the programmer g, tions.

be explicit about which cryptographic methods are be-
ing trusted for declassification in a given program.

actsFor (DESprin,Alice) {

else throw new SecurityException();

_ _ 7.2 Language-Based Security Tools
An alternative we explored was to infer the

DataPrin by examining the owners of the labels ofhe recent years have been marked by the emergence
the input arguments. Because of the limitations of tools for enforcing static guarantees of language-
dynamic labels in the current version of Jif, howbased information security. Programming language
ever, we were unable to pursue this further. Cuechniques have laid the theoretical foundations for
rently, dynamic labels can only be inspected by usitige implementation of security-typed languages, but
a switch label statement. Furthermore, the labelew languages such as Jif and FlowCaml [MNZZ01,
would have to be passed in explicitly as a dynamic I&mO03] have made it possible for programmers to
bel, not merely inferred from the existing argumentegjrite secure code in a robust, full-featured environ-
as an artifact of how default labels are treated in Jifment. These tools and research such as ours serve to
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further supporhigh-assuranceequirement. Security- protect data until something occurs and then releases

typed languages provide a new approach to provididgta. An example is an auction where all bids are con-

provable security guarantees for critical applicationgential until a certain time when the winning bid is

e.g., medical devices, electrical grid control. released. Analogous to our work, there may be other
Two main challenges face the designers of thesgecialized, practical safe mechanisms for declassifi-

language tools. The first involves increasing languagation with which a security-typed language could be

semantics with new features, such as run-time prinektended.

pals, revocation, and more coarse-grained policy con-Such mechanisms can best be recognized by mak-

trols. The second involves making these tools easieiirig the effort to build more applications with security-

deploy in business and government applications. Quped languages. This would help in considering the

work meets this second challenge by tapping intonaeds of systems designers when building real pro-

well-understood programming mechanism and relgrams. Further case studies towards this end are

ing it to information flow control. Encryption andneeded [Zda04, ASO5].

hashing are fundamental tools for building secure ap-

plications and are naturally used for publishing secure

data in a way that maintains confidentiality. In th® Related Work

realm of information flow control, this is called de- ) ) )

classification. Thus, with this language extension, W&€ concept of information flow control is well es-

have tied together a standard security technique wiablished. After the first formulation for the Orange

a less commonly understood mechanism for inform@00k lattice (Top Secret, Secret, etc.) by Bell and
tion release in a way that is safe and intuitive. La Padula [LB73] and the subsequent definition of

noninterference [GM82], Smith, Volpano, and Irvine
first recast the question of information flow into a
7.3 Future Work static type judgement for a simple imperative lan-

The language\”,, admits a simple noninterferenc&Uage [VSI96]. The notion of information flow has
proof precisely because the semantics of a transfBfen extended to languages with many other fea-
mation function are not involved with our language s&rés, such as programs with multiple threads of ex-
mantics. Consider a symmetric key encryption fungcution [SV98], functional languages and their ex-
tion such as DES: it takes an integer as a key lgnsions [Zda02] and distributed systems [MSO03].
gument, a string argument to encrypt, then returns>goelfeld and Myers [SMO3a] provide a comprehen-

string argument as the encrypted result. This functi§iy® Survey of the field.

should have the type Two robust security-typed languages have been
implemented that statically enforce noninterference.
((intg x Stringy)e — Stringy)ep e JFlow [Mye99a] and its successor Jif [MNZZ01] in-

troduce such features as a decentralized label model,

If DES is able to declassify data at security lekighe label polymorphism, and run-time principals in an
result should be public. However, if the symmetriextension to the Java language. Flowcaml [Sim03]
key was originally viewable to the public, an observéPS02] implements a security-typed version of the
will be able to see changes in which value has be€aml language, that satisfies noninterference.
encrypted. It may be illuminating to investigate some The property of noninterference tends to be overly
notion of modeling values and their security levels asstrictive in practice. Most real programs require
trap-doors into certain transformation functions.  some notion of interference and intentionally leak

Another direction is in continuing this approach teome information to an observer. A simple password
making simple, practical, safe mechanisms for declafiecking program reveals one bit of information to
sification. Other work [CMO04, LZ05, AS05, SS05hn observer: whether or not the guessed password
has identified common paradigms for safe declassifias correct. An encrypted message leaks a ciphertext
cation. Although encryption is the most common, otlhich is dependent on the input. This introducies
ers exist. One of particular importance are seals whiclassification the process of decreasing the security
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annotation on data in some controlled manner. Dike ways that declassification may release informa-
classification is a powerful mechanism, but it violatdn. We make no such attempt to provide this; rather
pure noninterference. It is therefore important to rese focus on a very specific form of declassification—
tain some security guarantees when using declassficryption. Since the goal of our work is making
cation. Sabelfeld and Sands recently provide a sunsscurity-typed languages more practical rather than
of this field [SS05]. more powerful, we address the form of declassifica-

Intransitive noninterferencfRG99] is a relaxing of tion which is most standard in secure programs. By
noninterference where information may flow betwediiting the scope of our work, we are able to provide
different security levels by a some policy. If informabot only a theoretical soundness result, but also an im-
tion can flow from leve¥ to level , we write? ~ ¢. Plementation in a security-typed language.

The policy may be intransitive? ~» £, and¢y ~» ¢ do Also related but orthogonal are quantitative ap-
not imply ¢ ~ ¢. We do not consider declassificatio®roaches [Lau03, Low02, DPHWO02, Vol00, SMO3b]
with this granularity in this paper. andrelative secrecyfVS00] which attempt to deter-
mine or bound how much information is released us-

Myers and Liskov [MLOO] formulated selective | Nt
form of declassification which requires that a proced Probabilistic methods. We do not attempt to deter-

have the propeauthority in order to declassify datg Mine how much information is being released by these

Each process is declared to have authority to act foff éSted cryptographic functions; we trust that they re-
(possibly empty) set of principals. That process C(Jﬁ.pse s_ufﬁme_ntly little so as to be impervious to crypt-
legitimately declassify data owned by those princ"i"-”alys's' This work could be complementary to ours

pals. This is the notion of declassification that is buﬁ’[y providing further QPaVa”te_es and give for.mal rea-
into Jif and thus also the one extended by our impfe2"S for trusting certain functions to declassify secret

mentation. data.

yersand 2danceio proposedahusnesgrop., SCUED Spproaches touares shour secrty
erty [ZMO1] for declassification, for which a type sys-. g .

tem [Z2da03] and enforcement mechanism [Mszoade of a security-typed framework. ~Abadi and

. ordon [AG98] consider the spi-calculus [AG99]

were subsequently developed. This work enforces { .

) .. with shared-key symmetric cryptography, and prove
security property that an attacker cannot exploit de- . . . . )

e . . . .~ ~a bisimulation result. Sumii and Pierce [SP01] focus
classification to gain more information than is inten- . . o
. . . . on extending the\-calculus with cryptographic prim-
tionally released. This is accomplished by trackin : .
: . : e ifves. Both show the behavioral equivalence of ob-
integrity and ensuring that declassification only takes

. ...servationally equivalent systems and assume only one
place in code trusted by the owner of the declassme% L y€q ys'e . y
data. implicitly trusted cryptographic function; they do not

consider more general declassification within a secu-
Two other approaches have attempted to formgk

_ _ = - y policy lattice.

ize notions of declassification so that specific forms

can be expressed in concise terms. Chong and My-

ers [CMO04] introduce the concept abninterference 9 Conclusion

until conditions This property guarantees that non-

interference is maintained until certain conditions ofn real systems, one-way functions are used to declas-
cur (e.g. a seal is lifted, all bids have been cast in aifly sensitive data because they are trusted to release
auction, or password guesses are checked by certifiedinformation. Our work introduces this property
code). Li and Zdancewic [LZ05] propose a mathéato a security-typed language. We annotate functions
matical model calledelaxed noninterferencevhich with security levels. One-way functions may be an-
factors a program into high and low inputs and specietated with a high security level; this indicates they
fies exactly what high information is released by usirayetrustedand permits them to serve as a safe mecha-
composable, extensional functions. These two workism for declassification. In this paper, we have given
are most relevant to our result. They seek to provideformal definition of a security-typed language with
a general mathematical framework for characterizinigis extension, and proved that it enforcesinterfer-
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ence modulo trusted functionAdditionally, we have
implemented this extension in the Jif language. This
extension represents another step forward in making
provable noninterference policies accessible for prd®D77]
tical applications.
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Appendix A Supposée/ C ¢: thenlvi(s;) C ¢ andlvi(ss) C ¢,
and by the above value equivalences we have

t=<t (SFREFL) (v1,w1) ~¢ (v2,w2) @ (81 X S2)¢
<ty by <t - -
! _t2< t23_ 3 (ST-TRANS) and thus the expression equivalence
12
sh <51 s = s ~ :
1251 523 2 (STFUN) (r1(e1),71(e2)) ~¢ (va(e1),72(e2)) : (51 X s2)¢

s1— 82 X 8 — 8

, , This is the required result.
81 287 82 = 8y

—— (ST-PROD)
51 X 82 2 81 X 8y Case (P-FST):
t=t 4/l S-S
te 2t (sT-sLAB) Suppose we havé + fst(e) : s; U ¢ using the

(TP-FST) rule. Then we have the derivation

Figure 12: Subtyping Rules The: (s1 % s2)e

er;?(;anf:llI'sgrrr):ggtirs;eZnsciu:lt}ll)?lng Judgem_ent, and.oe&gply induction to receive the equivalence
, yping are given in Figur

10, Figure 12, and Figure 11 respectively. The full
definition of thex relation is given in Figure 13. The
map~7 : b — ¢ assigns basic values to their basige thus have the evaluations

types, i.er(3) = int, w(true) = bool.

Y1(e) ~¢ v2(e) & (51 % s2)0

Theorem A.1 (Substitution). If T + e : s andT F n(e) v nle) fuw
T ¢ Ve, thenyi(e) =¢ ya(e) : s. with

Proof. Proof by induction on the size of the typing v R w (81X S2)p
derivation.

Thus we have

Case [P-PROD): v= (v, w1) w= (vg, wo)
We have If ¢ Z ¢, thenlvl(s;) U ¢ Z ¢ and so the values are
) related at the proper security level. Otherwisg ¢,

TF{er, e2) = (51 % 52)e and the following equivalences hold.

wherel = [vl(s1) U lvl(s2). We have the derivations
V1 %qvgzsl w1 m<w2:32
I'kei:sy T'hey:sy

o . - . BylLemmab5.7,
Applying induction to these smaller derivations gives
us V1 RS Vg l(sy) Ll

vi(er) =¢ valer) 151 vi(e2) =¢ 72(e2) : 52 We thus have

and thus we have the evaluations
T (fst(e)) ~¢ ya(fst(e)) : lwl(sy) L L
yi(er) dvi ya(er) U vo

71(e2) $wi y2(e2) § w2 This is the required result.
and the equivalences
Case (P-SND):
U1 %4’02281 w1 %4’[02282
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The proof of this case is symmetric to the proof forhis is the required result.
(TP-FST).
Case (P-LAM ):
Case (P-IFTHEN)):
We havel - (A\z.e); : (s1 — s)y.
Supposd’” |- if e; then e elsees : s: by inversion  Supposey; ~¢ v : s1: We must showe[v; /z] ~¢

we have the derivation elvy/x] : s. If £ [IZ ¢ this holds as the expressions type
correctly: thus, assume (. AsT' F v, ~¢ 72, we
'+ (A b00|g have
and the derivations DPlz : s1] Fyi{z — v} ~¢ v2{z — v2}
F'Fey:s T'kes:s By induction on the typing derivation
Apply induction to the first derivation to receive Fz:s1]ke:s
Y1 (e1) ~¢ Y2(e1) : bool, we then have the equivalence
We then have the evaluations Yi{z = vi}(e) m¢ ye{r — vat(e) s UL

) bor Aa(er) U om becauser ¢ dom(I") we can rewrite this as

and the equivalence m(efvr/x]) m¢ ya(elva/]) s s UL

and thus
v1 A¢ U2 @ booly
If ¢ Z ¢, then the if-then expressions are related N((-e)e) e na((Aze)e) : s UL
by definition. Otherwise as; andv, are equivalent This is the required result.
at a basic type and C ¢, thenv; = v, and so the
same evaluation rule applies to evaluating the ent@ase (P-APP):
if-then expression. Assume without loss of generality
that the(Ev-1F1) rule applies: then apply induction to  We havel’ + e; e; : s L £ and so we have the

the typing derivation oé, to receive deductions
7i(e2) =¢ v2(e2) : s Fter:(s1—8) Ther:s
We thus have Apply induction to both of these smaller derivations

the receive the equivalences
yi(e2) 4 vi 2(e2) U vy
yi(er) =¢ yaler) s (s1— s)e 71(e2) =¢ y2(e2) @ 51

and the equivalence _

We thus have the evaluations
/A
V1 V28 y(er) 4 (Azr-eh)e yaler) d (Aza.ep)y
By Lemma 5.7, Yi(e2) $vr yi(e2) I vo

, , and the equivalences
vy R vyt s UL

L . o (xreh)p = Mxaeb)p i (s — 8)p vl AUy S
As this is the result of the evaluation of the entire |f( er)e e (Azzep)e: (51 Jo iU
statement, we have: By the definition of~ for function types, we have

71 (if e1 then ey elsees) ~¢ 1o (if e; theney elsees) : sLIC el[vi/z1] ¢ ey[va /o)t s UL
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and thus

eifvi/z] vy eylva/xo] I vy

and so
’Yl(el 62) ¢ 72(61 62) s/

This is the required result.
Case ([P-suB):

This case follows directly from Lemma5.7. O

Appendix B

To demonstrate our Jif extension, we have developed a
class which performs DES encryption and decryption.
Theencrypt method in thedES object is marked with
adeclassFor constraint to indicate that it is trusted
to encrypt the data of a given principal. The code is
given in Figure 14.
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F(bg):Lg F(az)zs
T'Eb:y I'kFx:s

Fker:sy Thep:sy £=1wl(sy) Ulvl(sa)
'k (e1,e2) : (s1 X s2)¢

(TP-BVAL) (TP-VAR)

(TP-PROD)

I'ke:(s1 % s2)g
Ff—fSt(e) s U/l

I'ke:(s1xs2)g
I'tsnd(e) : so UYL

(TP-FST) (TP-SND)

I'Feq : booly
I'Fey:s T'kHeg:s
I' - if e; theney elsees : s LI #
Flz:si))tFe:s z¢dom(l)
' (Az.e)p: (s1— s)e

(TP-IFTHEN)

(TP-LAM)

IF'kep:(s1—s)
I'key: s
I'keley:suul
I'ke:s; I'ke:s;

type(F) = (8" — )¢, type(F) = (' — s)¢,
s1Cs s ZUlp s1Cs s Clp

(TP-APP)

- sl - s2
' F(e): sUlvl(sy) (TP-TRANSL) 'HF(e):smL (TP-TRANS2)

T'kFe:s s=<5§
I'kFe:s

(TP-SUB)

Figure 10: Typing Rules fok?,

Sec

e1 b (\z.e)p

eg v el /x] Jv
eres v

e v el v

(e1,€2) I (v1,v2)

€~U«<'U,Ul> €U<’01,U>
Tt Lo (EV-FST) snd(e) I v (EV-SND)
er Jtrue eg v
if e; then ey elsees || v

(EV-APP)

(EV-PROD)

(EV-IF1)

e | false e3 v
if e; then ey elsees || v

elwv
F(e) | F(v)

(EV-IF2)

(EV-ORAC)

Figure 11: Evaluation Rules for/,

Sec

22



vy R vy =dep fori e {1,2}, F o 1andl T ¢ impliesvy = vy
()\:L’l.el)g ¢ ()\:L’g.eg)g : (81 — Sg)g =def fori e {1,2}, [ ()\:L’i.ei)g : (81 — 82)5 and
¢ C ¢ implies (Vuy ¢ v @ 1 (e1[v]/a1] = ea[vh/zo] : so LU L)
(vl,w1> ¢ (1}2,1[)2> : (81 X Sg)g =def fori e {1,2}, [ (vi,wi> : (81 X 82)[ and
¢ C ¢ impliesvy ~=¢ va @ 51 andwy ~¢ wy : so
F(vl) R F(Ug) ity =def fori € {1,2}, = F(UZ) tty andtype(F) = ((tl)go — (t)go)gF
and/ C ( & (p C ¢ impliesvy ~¢ va & (t1)ep00

Figure 13: Definition of the=; Relation
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public class DES [principal P] authority(DESprin)

{
static public Key{P:} getNewKey()
throws NoSuchAlgorithmException, NullPointerException

{

return KeyGenerator.getInstance("DES").generateKey();

}

static public Ciphertext{} encrypt(Key{P:} key, String{P:} s)
where declassFor (DESprin,P)

{
Ciphertext{P:} ciphertext = null;

try {
Cipher{P:} desCipher = Cipher.getInstance ("DES/CBC/PKCS5Padding") ;

desCipher.init (Cipher.ENCRYPT_MODE,key) ;

final byte{P:}[1{P:} input = s.getBytes();
final byte{P:}[1{P:} encrypted = desCipher.doFinal(input);

ciphertext = new Ciphertext(new String(encrypted),
new String(desCipher.getIV()));

}
catch (Exception e) {}

return ciphertext;

¥

static public String{P:} decrypt(Key{P:} key, Ciphertext{P:} ciph)
throws (InvalidKeyException{P:}, IllegalBlockSizeException,
BadPaddingException,
NoSuchPaddingException, InvalidAlgorithmParameterException,
NoSuchAlgorithmException, NullPointerException)

Cipher{P:} desCipher = Cipher.getInstance("DES/CBC/PKCS5Padding") ;
desCipher.init (Cipher.DECRYPT_MODE,

key,

new IvParameterSpec(ciph.iv.getBytes()));

byte{P:}[I1{P:} encrypted = ciph.encText.getBytes();
String{P:} output = new String(desCipher.doFinal(encrypted)) ;

return output;

Figure 14: Jif code for a DES class in whiehcrypt is trusted to declassify data.
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