
Attack-Resilient Time Synchronization for
Wireless Sensor Networks

Hui Song, Sencun Zhu, and Guohong Cao
Department of Computer Science & Engineering

The Pennsylvania State University
University Park, PA 16802

Email: {hsong,szhu,gcao}@cse.psu.edu

Abstract— The existing time synchronization schemes in sensor
networks were not designed with security in mind, thus leaving
them vulnerable to security attacks. In this paper, we first identify
various attacks that are effective to several representative time
synchronization schemes, and then focus on a specific type of
attack called delay attack, which cannot be addressed by crypto-
graphic techniques. Then, we propose two approaches to detect
and accommodate the delay attacks. Our first approach uses
the generalized extreme studentized deviate (GESD) algorithm to
detect multiple outliers introduced by the compromised nodes;
our second approach uses a threshold derived using a time
transformation technique to filter out the outliers. Finall y, we
show the effectiveness of these two schemes through extensive
simulations.

I. I NTRODUCTION

Many sensor network applications require time to be syn-
chronized within the network. Examples of such applications
include mobile object tracking [1], [2], data aggregation,
TDMA radio scheduling, message ordering, multicast source
authentication protocol [3], to name a few. Consider the
application of mobile object tracking, in which a sensor
network is deployed in an area of interest to monitor passing
objects. When an object appears, the detecting nodes record
the detecting location and the detecting time. Later, these
location and time information are sent to the aggregation node
which estimates the moving trajectory of the object. Without
an accurate time synchronization, the estimated trajectory of
the tracked object could differ greatly from the actual one.
Similarly, we can see the importance of time synchronization
for the operations of other sensor network applications.

All network time synchronization methods rely on some
sort of message exchanges between nodes. Nondeterminism
in the network dynamics such as physical channel access time
or operation system overhead (e.g., system calls), makes the
synchronization task challenging in sensor networks. In the
literature, many schemes have been proposed to address the
time synchronization problem [4], [5], [6], [7]. These schemes
involve the exchange of multiple time synchronization mes-
sages among multiple sensor nodes [4] or between two sensor
nodes [5] to be synchronized. However, none of them was
designed with security in mind, even though security has
been identified as a major challenge for sensor networks [8].
Actually, even if an adversary is capable of destroying someor
all sensor nodes, it may opt for other more severe attacks, since
it is more dangerous to take actions based on some false sensor
data than without any data. For example, if an adversary can

attack the time synchronization protocol so that the estimated
direction of a mobile object is contrary to its actual direction,
a wrong or even risky action may be taken and many system
resources may be wasted. Thus, when a sensor network is
deployed in an adversarial environment such as a battlefield,
the time synchronization protocol is an attractive target to the
adversaries.

In this paper, we first identify several security attacks an ad-
versary can launch against a non-secure time synchronization
protocol. For instance, an attacker can replay old synchroniza-
tion messages, drop, modify, or even forge exchanged timing
messages. Since many of these attacks can be addressed by
employing appropriate cryptographic techniques, we focuson
a specific type of attack calleddelay attackwhich cannot be
addressed by the cryptographic techniques. In the delay attack,
a malicious attacker (or a compromised node) deliberately
delays the transmission of time synchronization messages to
magnify the offset between the time of a malicious node
and the actual time. All the current time synchronization
schemes [4], [5], [6], [7] are vulnerable to this attack in one
way or another.

We propose two approaches to detect and accommodate the
delay attacks. Our first approach uses the generalized extreme
studentized deviate (GESD) algorithm to detect the outliers
introduced by malicious nodes. If there is no malicious node,
the time offsets among the sensor nodes should follow the
same (or similar) distribution or pattern. For their attacks
to be effective, malicious nodes typically report their time
offsets much larger than those from the benign nodes, leaving
their reported values suspicious. Our second approach usesa
time transformation technique, which enables every node to
derive an upper bound of the time offset that is acceptable
to it, thereby filtering out the outliers. We discuss the merits
as well as the limitations of each approach, and evaluate
the effectiveness of these two schemes through extensive
simulations.

The rest of the paper is organized as follows. The next
section describes the related work and discusses various at-
tacks which are addressable using cryptographic techniques. In
Section III, we identify and discuss a new attack calleddelay
attack. Section IV presents the system model and assumptions.
In Section V, we present the outlier-based approach. Section
VI presents the threshold-based approach. The performance
of these two approaches are evaluated in Section VII. Section

VIII concludes the paper.

II. RELATED WORK

A. Time Synchronization Problems and Schemes

Traditional techniques for time synchronization include the
Global Positioning System (GPS) [9] and the Network Time
Protocol (NTP) [10]. Commercial GPS receivers can synchro-
nize the time to 200ns. However, GPS services may not be
available in places such as inside building and underwater,
and it may need several minutes of initial set up time. In
addition, GPS units might also be large, power-consuming,
and expensive relative to resource constraint sensor nodes.
NTP has been widely deployed and proved to be effective,
secure and robust in Internet, but not energy efficient. Thus,
both protocols are not suitable for wireless sensor networks.

The synchronization method proposed in [11] is the first
work addressing the time synchronization issue in sensor
networks. In this scheme, the clocks of the sensor nodes
are not synchronized. When an event occurs, each node
records the time of the event based on its local clock. After
that, a third party node, acting as a beacon, broadcasts a
synchronization pulse to all nodes in the area. All nodes
that have received the pulse will use it as a reference to
normalize the event timestamp. This scheme was further
extended to the reference broadcast synchronization (RBS)
scheme [4]. The RBS scheme however can only synchronize
multiple receivers in a local region. Later, a network-widesyn-
chronization scheme, called timing-sync protocol for sensor
networks (TPSN)[5], was proposed. In TPSN, all nodes form a
hierarchical structure. TPSN works in two phrases. In the first
phase, a hierarchical structure is constructed and each node
is at a specific level in the hierarchy. In the second phase, a
node in leveli+1 synchronizes with a node in leveli. In this
way, all nodes in the network synchronize with the root node.
Recently, Li and Rus have defined a localized diffusion-based
protocol in which nodes achieve synchronization by flooding
their neighbors with information about each node’s local clock
value [12]. After each node has learned the clock values of all
its neighbors, the node can use a mutually agreed consensus
value to adjust its clock.

Unlike the above schemes [11], [4], [5], [12] which aims at
maximizing the accuracy, the lightweight tree-based synchro-
nization (LTS) protocol [6] tries to minimize the complexity of
the synchronization. The scheme assumes that there are some
reference points which have the accurate time in the network.
It is also assumed that the clock drift rates are bounded.
Based on these assumptions, two synchronization algorithms
are proposed to synchronize nodes in pairwise. The first one
is a centralized scheme, where a spanning tree is constructed
from the reference point (the root of the tree). Then pairwise
synchronization is done from the root to the leaves. The other
algorithm is a distributed algorithm in which a node gets
synchronized on demand by sending a synchronization request
to the reference point. All the nodes along the route will get
synchronized.

B. Time Synchronization in Hostile Environments

Most of the aforementioned protocols [11], [4], [5], [6],
[12] become vulnerable in hostile environments. Taking the
RBS scheme as an example, an attacker may launch different
kinds of attacks to break the protocol. The first attack is called
masquerade attack. Suppose a nodeA sends out a reference
beacon to its two neighborsB and C. An attackerE can
pretend to beB and exchange wrong time information with
C, disrupting the time synchronization process betweenB
and C. A second attack is calledreplay attack. Using the
same scenario in the first attack, the attackerE can replay
B’s old timing packets, misleadingC to be synchronized to
a wrong time. A third attack is calledmessage manipulation
attack. In this attack, an attacker may drop, modify, or even
forge the exchanged timing messages to interrupt the time
synchronization process. For the message dropping attack,the
attacker can selectively drop the packets and thus prolong the
converging time of the synchronization process. This can be
done on a random or arbitrary basis, making it more difficult
to be detected. For the message forging attack, the attacker
can forge many reference beacon messages and flood the
network. This not only incorrectly synchronizes the neighbors,
but also causes those nodes to consume power to process these
unwanted and faked timing messages. If some nodes run out
of power, coverage holes or network partitions may appear.

We can certainly employ some cryptographic techniques to
address the aforementioned attacks. For example, providing
authentication of every exchanged message will prevent an
outside attacker from impersonating other nodes or altering
the content of an exchanged message; while authentication
can be achieved using pairwise key pre-distribution schemes
such as [13], [14], [15]. Adding a sequence number to beacon
messages or other messages will prevent message replay at-
tacks. Message dropping may be noticed by some misbehavior
detection schemes [16].

In this paper, we are addressing a new type of attack
calleddelay attack, which cannot be prevented or handled by
standard cryptography. We will define and discuss the delay
attack in Section III.

C. Fault-Tolerance Time Synchronization

The proposed approaches fall into the general field of fault-
tolerance time synchronization. This problem has been studied
for many years in the past [17], [18], [19], [20]. The algorithms
mentioned in [18], [19] are based on an averaging process that
involves reading the clocks of all the other processors. Because
of the use of averaging, two of the algorithms proposed in [18],
[19] requires3n+1 processors in order to handlen faults; the
third algorithm in [18], [19] requires2n + 1 processors with
the assumption that digital signatures are available. In [20],
the nodes are assigned to one or more groups, then each node
estimates the clock values of those nodes with which it shares a
group. The algorithms in [17] work for arbitrary networks and
can tolerate any number of processor or communication link
failures as long as the correct processors remains connected
by fault-free paths.

Our proposed schemes differ from these schemes in several
ways. First, in [18], [19], [20], it was assumed that two
nonfaulty clocks never differ by more than a predefined
thresholdδ, but how to setup this threshold is not discussed.
In our solution, we use the time transformation technique to
derive the threshold and also give techniques to remove this
assumption. Second, [17] requires an authentication mecha-
nism such as digital signatures to ensure that no other node
can generate the same message or alter the message without
being detected. Our schemes do not have this requirement
and can address delay attacks, which can not be handled by
cryptographic techniques such as digital signatures, because
nodes may be compromised.

III. T HE DELAY ATTACK MODEL

The time synchronization schemes proposed for wireless
sensor networks are based on two models: the receiver-receiver
model or the sender-receiver model. The reference broadcast
synchronization scheme (RBS) [4] and its prototype protocol
[11] falls into the receiver-receiver model. In the following, we
simply use the RBS scheme to represent the receiver-receiver
model. Schemes of the sender-receiver model include TPSN
[5], LTS [6], and the tiny-sync and mini-sync schemes [7]. In
the following, we will describe the delay attack model in the
context of the RBS scheme [4].

The RBS scheme is based on a simple idea: using a third
party for time synchronization. A node, which is a regular node
acting as areferencenode, broadcasts a reference beacon to
its neighbors. Each neighboring node records the arrival time
of the beacon based on its own clock. Since these receiving
nodes are close to the reference node, we can assume the
beacon arrives at both receivers at the same time. Therefore,
the difference between the recording times of these receiving
nodes is the time offset between them. By exchanging their
recorded receiving times, they can calculate the clock offset,
adjust and synchronize their clocks. As shown in Figure 1 (a),
nodesA andB have the recorded timesta andtb, respectively,
and the time offset between them isδ = ta−tb. To synchronize
with nodeA, nodeB may increase its clock byδ, or both of
them set their clocks to(ta+tb)/2. Thedelay attackis defined
in Definition 1.

Definition 1 (The delay attack): The attacker deliber-
ately delays some of the time messages, e.g., the beacon mes-
sage in the RBS scheme, so as to fail the time synchronization
process. We refer to this kind of attack as delay attack.

Figure 1(b) and (c) show two ways to launch the delay
attack in the RBS scheme. In Figure 1(b), two colluding nodes
act as the reference node for nodesA andB. They send the
reference beaconb to nodesA andB at different times. As a
result, nodesA andB receive the beacon messages at different
times, but they think they receive the beacon at the same time.
Figure 1(c) shows that a malicious node can launch the above
attacks alone if it has a directed antenna [21] so that nodesA
andB only hear one beacon message. The delay attack can
also be launched when a benign node is synchronizing with
a compromised node. The compromised node can add some

delay to the beacon receiving time and send it the good node.
This will mislead the good node to synchronize to a wrong
time.

The sender-receiver model protocols [5], [6], [7] are also
vulnerable to the delay attack. In the sender-receiver model,
the sender and the receiver exchange time synchronization
packets, estimate the round-trip transmission time between
them, and synchronize their clocks after finding the clock
offset between them. Since only two nodes are involved in
the process, this model does not suffer from the attacks
introduced by a malicious reference node. However, a node
can be deceived if the node it is synchronizing with is
malicious. Therefore, these schemes are also subject to the
aforementioned delay attacks.

IV. SYSTEM MODEL AND ASSUMPTIONS
A. Node, Network, and Security Assumptions

We consider a sensor network composing of resource-
constrained sensor nodes such as the current generation of
Berkeley Mica motes [22]. Every sensor node is equipped
with an oscillator assisted clock and powered by an external
battery. The clock of a sensor starts to tick only after it is
powered on. Since it is unlikely to power on all the sensor
nodes at the same time, there may be large time offsets
among sensor nodes initially. We assume that the sensor nodes
deployed in a security critical environment is manufactured
to sustain possible break-in attacks at least for a short time
interval (say several seconds) when captured by an adversary
[23]; otherwise, the adversary could easily compromise allthe
sensor nodes and then take over the network. To this end, we
assume that there exists a lower bound on the time interval
Tmin that is necessary for an adversary to compromise a sensor
node. We assume that the first time synchronization will be
executed and finished within the time intervalTmin. As a
result, we can assume that all the sensor nodes are loosely
synchronized.

Because of intrinsic clock drifts of sensor nodes, the time
offsets among sensor nodes could become very large (e.g., in
the order of seconds or even larger) unless time synchroniza-
tion is performed once in a while. Hence, we assume that time
synchronization is performed periodically. Clearly, the longer
the time period, the larger the time offsets. We will discussthe
selection of the appropriate synchronization interval in Section
VII-C.4.

Each node is assigned a unique id before deployment and it
can authenticate the messages sent/received with appropriate
shared keys established through a key management proto-
col [23], [24]. This ensures that no node can impersonate
others during the exchange of timing messages and a malicious
node can act as a reference at most once.

B. Models for Secure Time Synchronization

The general idea of defending against delay attacks is as
follows. After collecting a set of time offsets from multiple
involved nodes, we identify the malicious time offsets that
are under delay attacks. The identified malicious time offsets
will be excluded and the rest of the time offsets are used to

A

B

t a

t b

M Ackreference node
R

beacon b

beacon b

t

t

A

Compromised
Reference node

R
B

Attacker

t

b

b

node
malicious t+e

B

A

Compromised
Reference node

R t

b

b

t+e

(a) The RBS scheme (b) Collusion-based delay attack (c) Directional antenna-based
delay attack

Fig. 1. The RBS scheme and the delay attacks

R1

ta
i

...

...

R4

R3

R2 Rn

Ri+1

Ri

Rn−1

delay attack

delay attacktb
i

A

B

A

R2

R4

R3

R1

Rn

Ri+1

R5

Ri

Rn−1

...

...

b1

b1

b2

b2

b3
b3

b4

b4

bi

bi

bn−1

bn−1

bn

bn

delta1

delta2

delta3

delta4
delta(B)

delta(i+1)

delta(i)

delta(n−1)

delta(n)

(a) Two-node model (b) Neighboring-node model
Fig. 2. Two models for secure time synchronization

estimate the actual time offset. Next, we present two models
for collecting the time offsets: the two-node model and the
neighboring-node model, which are described in the context
of the RBS scheme.

The two-node model: In this model, one node needs to
synchronize with another node. For example, in Figure 2(a),
nodeB is the cluster head andA is a node within the cluster.
All nodes in the cluster are required to synchronize withB.
Due to security concerns, nodeA only trusts the cluster head
but not other nodes in the cluster. However, it has to use
other nodes as reference nodes when using RBS. To deal with
security attacks on time synchronization, nodeA uses multiple
reference nodes to obtain a set of time offsets. For example,
it can requestR1, R2,... Rn to serve as reference nodes. Let
〈tia, tib〉 represent the two beacon receiving times obtained by
using a reference nodeRi andδi = (tia−tib) be the time offset
betweenA and B. Node B obtains a set ofn time offsets
{δ1, δ2, . . . , δn}. Based on the collected time offsets, we can
detect and exclude the malicious time offsets and obtain a
more accurate estimation on the actual time offset betweenA
andB.

The neighboring-node model:In some applications, a node
may be required to synchronize with its neighbors to cooperate
with each other. In this case, the two-node model is not
enough since some neighbors may have been compromised
and synchronizing with a malicious node is more vulnerable
to attacks. Our solution is illustrated in Figure 2(b). Suppose
A hasn neighbors:R1, R2, . . . , Rn. We run the RBS scheme

betweenA and each of its neighbors and each time we use
a different node as reference to obtain a time offset. After
collecting a set ofn time offsets, we can detect the outliers,
exclude them, and make a good estimation on the actual time
offsets.

In addition to the above two models, other models are
possible too. However, all of them have one thing in common:
they collect a set of time offsets, which may include the
malicious time offsets. The focus of this paper is to answer
the following question:Given a set of time offsets, how to
identify the outliers and how to achieve an attack-resilient
estimation?In this paper, we propose solutions in the context
of RBS, although the solutions can also be applied to the
sender-receiver based model.

V. THE OUTLIER-BASED DELAY ATTACK DETECTION

Intuitively, without delay attacks, the time offsets among
nodes follow a similar distribution. The existence of delay
attacks makes the malicious time offsets much different from
the others; otherwise, the attack is not effective and can be
tolerated by the time synchronization schemes. In statistics,
these malicious time offsets are referred to asoutliers, which
is defined as “an observation which deviates so much from
other observations as to arouse suspicious that it was generated
by a different mechanism” [25]. Numerous schemes have
been proposed to detect outliers [26] (see [26] for a survey).
Among them, the generalized extreme studentized deviate
many-outlier procedure (GESD procedure) [27] is proved to
perform well under different conditions [26]. In the following,
we introduce GESD and discuss how to apply it to our
problem. After the outliers have been identified by GESD, we
discuss how to exclude the outliers and obtain a more accurate
estimation of the time offset.

A. The GESD Many-Outlier Detection Procedure

Before introducing GESD, let us first look at the extreme
studentized deviate (ESD) test which is also called the Grubb’s
test. The ESD test is good at detecting one outlier in a random
normal sample.

Definition 2 (ESD Test): Given a data set Γ =
{x1, x2, . . . , xn}, The mean of Γ is denoted asx̄ and
the standard deviationof Γ is denoted ass. Let

Ti = |xi − x̄|/s, wherei = 1, . . . , n.

Ti is also called the correspondingT -valueof xi. Let xj be
the observation that leads to the largest|xi − x̄|/s, wherei =
1, . . . , n. Then xj is an outlier when Tj exceeds a tabled
critical value λ.

In principle, if Tj does not exceed the critical valueλ, we
need not single outxj . Assuming this test finds an outlier, we
then look for further outliers by removing observationxj and
repeating the process on the remainingn − 1 observations.
However, the ESD test can only detect one outlier.

The GESD procedure is a modified version of the ESD
test, which can find multiple outliers. Two critical parameters
for GESD arer and λi, wherer is the estimated number of
outliers in the data set andλi is the two-sided100 ∗α percent
critical value got from Formula (1).

λi =
tn−i−1,p(n − i)√

(n − i − 1 + t2n−i−1,p)(n − i + 1)
(1)

In Formula (1),i = 1, . . . , r. tv,p is the100 ∗ p percentage
point from thet distribution with v degrees of freedom, and
p = 1− [α/2(n− i+1)]. Givenα, n andr, the critical values
λi, wherei = 1, . . . , r, can be calculated beforehand.

B. Using GESD for Delay Attack Detection

The GESD-based approach is formally defined as follows.
Definition 3 (Using GESD for delay attack detection):

Given the time offset setΓ = {δ1, δ2, . . . , δn}, all the time
offsetsδi that are identified as outliers by GESD are claimed
to be under delay attack.

In GESD,r is the number of estimated outliers in the data
set, which is the estimated number of malicious time offsets
in our settings. The choice ofr plays an important role in
GESD. If r is set to a small number and there are more than
r malicious time offsets among then time offsets, some of
them cannot be detected using GESD. On the other hand, if
r is too large, it wastes time on checking the nodes that are
in fact benign (good) ones. In this paper, since the number of
time offsets is small (e.g., 20), we setr to be half of the total
number of time offsets. We also assume that the number of
malicious time offsets is less than half of the total number of
time offsets. Without this assumption, GESD may not work
since it may find the malicious time offsets to be benign and
the benign ones to be malicious.

Definition 4 (Estimate r): Let the median of the time off-
set setΓ be x̂ and s be the standard deviation.r is defined
as the number of time offsetsxj such that |xj − x̂|/s >
2, wherei = 1, . . . , n.

When the number of malicious nodes is small, i.e, less than
5% of the total, we can utilize the median of the time offsets to
setr. As shown in Definition 4,r is the number of time offsets
that are two standard deviations away from the median. In
most cases, the data and time offsets are normally distributed,
and then 95% of the values are at most two standard deviations
away from the mean. In our case, we replace the mean with
the median since the median serves better when there exists
malicious data sets.

Algorithm 1: Input: r, Γ, λ
0 let j = 1, C andT be two arrays
1 begin loop
2 calculatex ands over setΓ; find xkj

which maximizes|xi − x̄|, xi ∈ Γ;
3 let T [j] = {|xkj

− x̄|/s}, C[j] = xkj
;

removexkj
from Γ;

4 increasej; decreaser;
5 if (r < 1) break
6 end loop
7 let outlier setΩ = ∅, j = r;
8 begin loop
9 if (T [j] > λn[j])
10 then {Ω = ∪{C[k]}, k = 1, . . . , j;

return Ω}
11 else{decreasej; if (j < 1) return ∅}
12 end loop

Fig. 3. Identifying outliers with GESD

Figure 3 shows how to use GESD to identify outliers. The
algorithm accepts three parameters: the estimated number of
outliersr, the time offset data setΓ, and the critical valueλ
computed by Formula (1).λ can be pre-computed and stored in
the sensors. In the following, we useλn to denote the critical
values for a data set withn elements. Two array structuresC
andT , are used to save the candidate outlier information.C
is used to keep the outliers andT is used to save theT value
(Definition 2) corresponding to the candidate outliers. TheT
values of the candidate outliers are later used to compare with
the critical values to decide whether the candidates are outliers
or not.

Time complexity In GESD, two operations are time con-
suming: calculating the mean̄x and the standard deviation
s. Among them, the most expensive operation is to calculate
the standard deviation, which involves multiplications.

s =

√√√√ 1

n

n∑

i=1

(xi − x̄)2

Given r and n, the first loop (Line 1-6) hasn + (n − 1) +
. . . + (n − r) = nr − 1

2
r2 multiplications. In general, the

time complexity of GESD isO(nr). In the worst case, where
r = n

2
, the time complexity isO(3

8
n2).

C. Delay Attack Accommodation

The goal of securing time synchronization is to synchronize
the time in the presence of delay attacks. This can be achieved
by first identifying the outliers (malicious time offsets) and
then excluding them when estimating the true time offsets
between nodes. We use the mean of the benign time offsets
to approximate the true time offsets. The following definition
can be used to approximate the time offset estimationδ̂.

Definition 5 (Estimate δ̂): Let Γ be the time offset data
set andΩ be the outlier set. Then the benign time offset set is
Γ−Ω. δ̂ is defined as the mean of the setΓ−Ω. Let the size

of Γ be n and the size ofΩ be k. δ̂ is calculated as follows.

δ̂ =

n−k∑

i=1

xi

n − k
, where xi ∈ Γ − Ω.

VI. T HRESHOLD-BASED DELAY ATTACK DETECTION

One drawback of the GESD approach is that it needs to have
enough reference nodes to detect the malicious nodes effec-
tively. This has been verified by the simulation results shown in
Section VII-B. In this section, we propose a threshold-based
approach to detect the delay attacks based on the following
observations. Without delay attacks, the time offset between
two nodes should be bounded by a threshold value if the
maximum clock drift rates can be bounded. With the threshold
value, we can identify those time offsets that are larger than
the threshold as malicious ones. Different from GESD, the
threshold-based approach does not need that many reference
nodes. Moreover, the threshold-based approach only needs to
calculate the threshold once, and hence has less overhead.

In the following, we first present the time transformation
technique and then present a method to determine the threshold
based on the time transformation technique. After determining
the threshold, we discuss how to use it to defend against delay
attacks. Different from the previous work [28] where the time
interval is used to order messages, we utilize the time interval
to quantify the time offset upper bound between two nodes.

A. The Time Transformation Technique

Before presenting the time transformation technique, let us
first look at the hardware oscillator assisted clock in Berkeley
Mica motes [22], which implements an approximationC(T)

of the actual timeT . C(T) = k
∫ T

T0

ω(η)dη + C(T0) is a
function of the real timeT , which derives from the angular
frequencyω(T) of the hardware oscillator. In this formula,k
is a proportional coefficient andT0 is the initial clock value.

For a perfect hardware clock,dC

dT
is equal to one. However,

all hardware clocks are not perfect since they are subject to
clock drift. We can only assume that the clock drift rate of the
sensor clock does not exceed the maximum value ofρ. Thus,
we have the following inequality:1 − ρ ≤ dC

dT
≤ 1 + ρ.

The idea of time transformation is to transform the real
time difference∆T into the sensor clock difference∆C

and vice versa. These transformations are difficult because
of the unpredictability of the sensor clock, but there exists
some lower and upper bounds on the estimates. Based on
the previous inequality, we can get:1 − ρ ≤ ∆C

∆T
≤ 1 + ρ.

This inequality can be transformed into(1 − ρ)∆T ≤ ∆C ≤
(1 + ρ)∆T and ∆C

1+ρ
≤ ∆T ≤ ∆C

1−ρ
, which means that the

clock difference∆C can be approximated by the interval
[(1 − ρ)∆T , (1 + ρ)∆T]. On the other hand, the real time
difference∆T that corresponds to the sensor clock difference
∆C can be approximated by the interval[∆C

1+ρ
, ∆C

1−ρ
].

In order to transform a time difference∆C1
corresponding

to one nodeN1 with ρ1, to a time corresponding to another
node N2 with ρ2, ∆C1

is first estimated by the real time

Time in node A

Time in node B

True Time
T2

t2

t4

T1

t1

t3

M Ack

t

t

T

a

b

beacon b

beacon b

Node A

Node B

Fig. 4. Time transformation

interval [∆C1

1+ρ1

,
∆C1

1−ρ1

], which in turn is estimated by the sensor
clock time interval[1−ρ2

1+ρ1

∆C1
, 1+ρ2

1−ρ1

∆C1
], relative to the local

time of nodeN2. As shown in Figure 4, nodesA andB use
RBS to do time synchronization. The maximum clock drift
rates of A and B are denoted asρa and ρb, respectively.
SupposeA and B receive the reference beacon at timeta
and tb, in terms of their own local clocks, respectively. After
receiving the reference beacon, at timet1, A sends a message
M to B, telling B that it received the beacon at timeta.
MessageM is received byB at time t3, and thenB sends
back anAck at time t4 to confirm that it has receivedM . In
theAck, B piggybackstb, t3, andt4. After receiving theAck,
A can use the time transformation technique to transform the
beacon receiving timetb to a time interval[tbL, tbR] relative
to A’s clock as follows.

tbL = t2 − (t4 − tb)
1+ρa

1−ρb
− ((t2 − t1) − (t4 − t3)

1−ρa

1+ρb
)

tbR = t2 − (t4 − tb)
1−ρa

1+ρb

(2)

B. Determining the thresholdξ

The thresholdξ is the upper bound of the time offsets
between two nodes. We determineξ based on the idea of
time transformation shown above. A straightforward solution
is to use (tbR − tbL) as ξ. However, (tbR − tbL) is a tight
bound. If we use it to decide whether a time offset is malicious
or not, it may identify benign time offsets as malicious. To
effectively detect malicious time offsets,ξ should be a looser
upper bound. SincetbL and tbR are the two boundaries of
time tb at nodeA, max(|ta − tbL|, |tbR − ta|) should be the
upper bound of the time offsets betweenA andB. Based on
this observation, the time offset upper bound,ξab, betweenA
and B can be determined by Formula (3), which is a looser
upper bound compared to (tbR − tbL). This can be explained
as follows. If the clock drift rate of the two nodes are equal,ta
should fall inside [tbL, tbR]; otherwise,ta may fall outside of
[tbL, tbR], leading to a looser upper bound based on Formula
(3). Since the clock drift rates of two nodes are usually not
equal, Formula (3) gives a looser upper bound compared to
(tbR − tbL).

ξab =






tbR − ta if ta < tbL
MAX {tbR − ta, ta − tbL} if ta ∈ [tbL, tbR]
ta − tbL if ta > tbR

(3)

The time offset upper bound between two neighboring
nodes shown in Formula (3) is calculated only in the first
time synchronization, which happens shortly after the sensor
network deployment. Thus, the time offset caused by the clock
drift is small in Formula (3). The clock drift time increases
as time goes by. If the time synchronization interval is long,
the clock drift time will be long and should be taken into
consideration when determining the time offset upper bound.

Formula (4) gives the time offset upper bound between
nodesA andB considering clock drift time.

∆ab = ξab + |ρa − ρb| · T (4)

In Formula (4),T is the time synchronization interval and
∆ab is the upper bound of the time offset between nodesA
andB when they are synchronized using one reference node.
To increase the accuracy of the estimation, we usen reference
nodes to obtain a set ofξab. The thresholdξ is defined as the
maximum among them, as showed in Formula (5).

ξ = MAX
{

ξab
i

}
+ |ρa − ρb| · T, where1 ≤ i ≤ n. (5)

With threshold ξ, we can detect malicious time offsets
among a set of time offsets. The threshold-based approach
is formally defined in Definition 6.

Definition 6 (The threshold-based delay attack detection):
Given the time offset data setΓ = {δ1, δ2, . . . , δn}, all the
time offsets bigger thanξ are claimed to be under delay
attack and are identified as malicious time offsets.

Time complexity Compared to GESD, the threshold-based
approach involves two multiplications when calculating the
interval [tbL, tbR] in Formula (2). Givenn reference nodes,
the total number of multiplications are2n. Thus, the time
complexity of the threshold-based approach isO(2n), which
is much less than that of the GESD approach, which isO(nr).
Further, the threshold is only calculated in the first time
synchronization, but the GESD outlier detection algorithm
is executed for each time synchronization. Thus, the GESD
approach has much higher overhead than the threshold based
approach.

C. Delay Attack Accommodation

After the malicious time offsets have been detected using
the threshold, we can use the same strategy as that in Section
V-C to exclude them and obtain a good estimation on the true
time offset between two nodes.

VII. PERFORMANCEEVALUATIONS

A. Simulation setup

We evaluate the performance of the two approaches using
the reference broadcast synchronization (RBS) scheme by
simulation. In the simulation, each node has a maximum
clock drift rate at microsecond level (10−6 second) [28].
The deviations of clock drift rates among nodes are also at
microsecond level. To synchronize two nodes, a number of
reference nodes are generated varying from 10 to 20. Each

reference node broadcasts a reference beacon to these two
nodes, which record the beacon receiving times according
to their clocks. The arrival times of the reference beacons
follow Poisson distribution, and the beacon processing time
follows normal distribution. Since the typical message size is
36 bytes in TinyOS [29], the beacon processing time is about
12 milliseconds which is the time required to process a 36-byte
packet.

After a beacon has been processed, one node sends the
beacon receiving time to the other, which calculates the time
offset between them. After these two nodes get a set of time
offsets, we randomly pick some of them as malicious time
offset and assume they are under delay attacks. We also add
a delay attack time which follows normal distribution. Based
on a set of time offsets, the proposed schemes are evaluated
with different levels of delay attack time and different number
of malicious time offsets. All results are obtained by setting
the synchronization interval to 5,000 seconds. The resultsare
averaged over 100 runs. Most of the simulation parameters are
listed in Table I.

Number of reference nodes 10 to 20
Number of malicious nodes 1 to 5
Beacon processing time mean12 milliseconds
Beacon arrival interval mean 200 milliseconds
Clock drift rate mean 0.005 millisecond
Clock drift rate deviation 0.001 millisecond
Delay attack time 1 - 100 milliseconds
Synchronization interval 5,000 seconds

TABLE I

SIMULATION PARAMETERS

Three metrics are used to evaluate the effectiveness of the
proposed schemes: the successful detection rate, the falsepos-
itive rate, and the accuracy improving rate. In a network with
delay attacks, the successful detection rate tells the percentage
of malicious time offsets that can be successful detected. The
false positive rate shows the percentage of time offsets that
are reported as outliers but are not. The accuracy improving
rate shows the accuracy improvement on the estimated time
offset after the detected outliers have been excluded. Letδ̂ be
the estimated time offset when the outliers have been excluded
and δbad be the estimated time offset when the outliers have
not been excluded. The accuracy improving rate is defined in
Formula (6).

Accuracy improving rate=
δbad − δ̂

δ̂
∗ 100% (6)

B. Simulation Results of the GESD Approach

1) The Successful Detection Rate:Figure 5 shows the
successful detection rate as the delay attack time (delay), the
number of malicious nodes, and the number of time offsets
(NUM REF) change. We did not show the successful detection
rate when there are five malicious nodes for NUMREF=10,
because GESD does not work when the number of malicious
time offsets is equal or larger than that of the benign nodes.

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5

S
uc

ce
ss

 R
at

e
(in

 %
)

No. of malicious nodes (delay= 1 ms)

NUM_REF=20
NUM_REF=15
NUM_REF=10

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5

S
uc

ce
ss

 R
at

e
(in

 %
)

No. of malicious nodes (delay= 10 ms)

NUM_REF=20
NUM_REF=15
NUM_REF=10

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5

S
uc

ce
ss

 R
at

e
(in

 %
)

No. of malicious nodes (delay= 100 ms)

NUM_REF=20
NUM_REF=15
NUM_REF=10

(a) (b) (c)
Fig. 5. The successful detection rate of GESD

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5

A
cc

ur
ac

y
im

pr
ov

in
g

ra
te

No. of malicious nodes (delay= 1 ms)

NUM_REF=20
NUM_REF=15
NUM_REF=10

 0

 0.5

 1

 1.5

 2

 0 1 2 3 4 5

A
cc

ur
ac

y
im

pr
ov

in
g

ra
te

No. of malicious nodes (delay= 10 ms)

NUM_REF=20
NUM_REF=15
NUM_REF=10

 0

 5

 10

 15

 20

 0 1 2 3 4 5

A
cc

ur
ac

y
im

pr
ov

in
g

ra
te

No. of malicious nodes (delay= 100 ms)

NUM_REF=20
NUM_REF=15
NUM_REF=10

(a) (b) (c)
Fig. 6. The accuracy improving rate of GESD

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5

S
uc

ce
ss

 R
at

e
(in

 %
)

No. of malicious nodes (delay= 1 ms)

NUM_REF=20
NUM_REF=15
NUM_REF=10

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5

S
uc

ce
ss

 R
at

e
(in

 %
)

No. of malicious nodes (delay= 10 ms)

NUM_REF=20
NUM_REF=15
NUM_REF=10

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5

S
uc

ce
ss

 R
at

e
(in

 %
)

No. of malicious nodes (delay= 100 ms)

NUM_REF=20
NUM_REF=15
NUM_REF=10

(a) (b) (c)
Fig. 7. The successful detection rate of the threshold-based approach

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5

A
cc

ur
ac

y
im

pr
ov

in
g

ra
te

No. of malicious nodes (delay= 1 ms)

NUM_REF=20
NUM_REF=15
NUM_REF=10

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 1 2 3 4 5

A
cc

ur
ac

y
im

pr
ov

in
g

ra
te

No. of malicious nodes (delay= 10 ms)

NUM_REF=20
NUM_REF=15
NUM_REF=10

 0

 5

 10

 15

 20

 0 1 2 3 4 5

A
cc

ur
ac

y
im

pr
ov

in
g

ra
te

No. of malicious nodes (delay= 100 ms)

NUM_REF=20
NUM_REF=15
NUM_REF=10

(a) (b) (c)
Fig. 8. The accuracy improving rate of the threshold-based approach

Based on the figure, we have the following observations.
First, when the delay attacks are at levels of 1ms 10ms, the
successful detection rate is pretty low in most cases. Sincethe
time synchronization interval is 5000 seconds, the clock drift
time between two nodes can be as large as 10ms. It is difficult
to detect the delay attacks when the delay attack time is not
significantly larger than the clock drift time, resulting inlow
successful detection rate. In Figure 5(a), since the delay attack
time is one level smaller than the clock drift time, increasing
the number of reference nodes does not help improving the

successful detection rate.

Second, as shown in Figure 5(b), when the number of
malicious time offsets increases, the successful detection rate
decreases due to the masking problem in outlier detection.
Masking occurs when an outlier goes undetected because of
the presence of other outliers. GESD is not robust against the
masking problem since it is based on themeanvalue, which
is affected by the outliers. As an exception, when NUMREF
is 20 and the number of malicious time offsets increases from
three to four, the successful detection rate increases. This can

be explained as follows. If one malicious time offset is not
detected in both cases, the successful detection rate will be
about 66% when the number of malicious time offsets is three
and 75% when the number of malicious time offsets is four,
which shows an increase in terms of successful detection rate.

Third, Figure 5(b) also shows that the successful detection
rate increases as the number of time offsets increase in general.
Given a number of malicious time offsets, we will have more
benign time offsets with a larger set of time offsets; and
the more benign nodes we have, the higher the successful
detection rate is. Thus, when there are multiple outliers, GESD
is more effective if more time offsets are available.

Fourth, as long as the delay attack time is much larger
than the clock drift during the synchronization interval, the
successful detection rate increases dramatically. For example,
as shown in Figure 5 (c), the successful detection rate reaches
100% when the delay attack is at 100ms level. As the delay
attack time is larger than the clock drift time, the malicious
time offsets can be easily identified. Although not shown in
the figure, GESD keeps the 100% successful detection rate
when the the delay attack time is larger than 100ms.

2) The False Positive Rate:The simulation results show
that the false positive rate of GESD is almost 0 in our system
settings. This is because a benign time offset will not be
identified as outlier when there really exists malicious nodes.
Thus, GESD works well in terms of false positive rate.

3) The Accuracy Improving Rate:Figure 6 shows the
accuracy improving rates with different level of delay attacks.
From the figure, we can see that the accuracy improving rate is
low when the delay attacks are at levels of 1ms and 10ms. This
is because the delay attack time is relatively small compared
to the clock drift time during the 5000-second interval. Thus,
excluding the malicious time offsets cannot have too much
improvement. However, as the delay attack time increases,
excluding the malicious time offsets can significantly improve
the accuracy improvement rate. For example, when the delay
attack time is 100ms, the accuracy improving rate can be
increased by as much as 16 times (see Figure 6(c)).

C. Simulation Results of the Threshold-based Approach

1) The Successful Detection Rate :Figure 7 shows the
successful detection rates with different level of delay attacks
when the synchronization interval is 5000-second. As shown
in Figure 7(a) and (b), when the delay attack time is 1ms,
the threshold-based scheme can achieve a higher successful
detection rate compared to GESD (Figure 5(a)(b)). For exam-
ple, when NUMREF is 20, the successful detection rate of
the THRESHOLD-based approach (80% on average) is seven
times higher than that of GESD (10% on average). This shows
that the threshold-based approach is effective even when the
delay attack time is small compared to the clock drift rate. In
the threshold-based approach, the threshold reflects both the
maximum time offset that two nodes can have when there is
no delay attack and the time offset caused by clock drift during
the synchronization interval. Thus, even though delay attack
time is not large compared to the clock drift time, it can still be

detected at a high rate. Similar to GESD, the threshold-based
approach achieves a 100% successful detection rate when the
delay attack time is 100ms.

Figure 7 also shows that the successful detection rate does
not change too much as the number of malicious time offsets
increases. Different from GESD, the threshold is affected
neither by the outlier masking problem nor by the number
of malicious time offsets.

In summary, the threshold-based approach can achieve a
better successful detection rate than GESD. The threshold-
based scheme performs well even when the delay attack time
is small compared to the clock drift time and it is robust against
multiple delay attacks.

2) The False Positive Rate:Simulation results show that the
false positive rate of the threshold-based approach is always 0
in different settings. This is due to the reason that the threshold
is determined in such a way that no benign time offsets will
be identified as malicious. From the false positive rate point
of view, both the GESD approach and the threshold-based
approach perform well.

3) The Accuracy Improving Rate:Figure 8 shows the
accuracy improving rates with different level of delay attacks.
As shown in Figure 8 (a), when the delay attack time is
1ms, the accuracy improving rate is below 30% most of time,
because the delay attack time is small compared to the clock
drift time. However, the accuracy improving rate achieved
in the threshold-based approach is much higher than that of
GESD. This can be explained by the fact that the threshold-
based approach can achieve a much higher successful detection
rate than GESD. As the delay attack time increases, the
improvement on the accuracy also increases as shown in
Figure 8(b) and (c). In terms of the accuracy improving rate,
the threshold-based approach performs better than GESD,
which is consistent with the results of the successful detection
rate.

4) The Synchronization Interval:Figure 9 shows the impact
of the synchronization interval on the successful detection rate
under different level of delay attacks. The results are obtained
when the number of time offsets is 10. As shown in the figure,
given a certain level of delay attack, the successful detection
rate decreases as the synchronization interval increases.For
example, when the delay attack time is 10ms, the threshold-
based approach can almost reach 100% detection rate when
the synchronization interval is less than 3,000 seconds. When
the synchronization interval is larger than 50,000 seconds(or
13.9 hours), the successful detection rates drops to about 60%
on average.

Figure 10 shows the tolerable synchronization interval with
different levels of delay attacks. We define thetolerable
synchronization intervalas the maximum synchronization in-
terval with which the threshold-based scheme achieves a 99%
or higher successful detection rate. Here, we still use ten
reference nodes. We observe that the tolerable synchronization
interval increases as the delay attack time increases. Figure 10
shows that the tolerable synchronization intervals are 0.83,
7.78, 83.33, 888.89, and 8055.56 hours when the delay attacks

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5

S
uc

ce
ss

 R
at

e
(in

 %
)

No. of malicious nodes (delay= 10 ms)

interval=16.7 mins
interval=1.39 hours
interval=2.78 hours
interval=13.9 hours
interval=27.8 hours

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5

S
uc

ce
ss

 R
at

e
(in

 %
)

No. of malicious nodes (delay= 100 ms)

interval=16.7 mins
interval=1.39 hours
interval=2.78 hours
interval=13.9 hours
interval=27.8 hours

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5

S
uc

ce
ss

 R
at

e
(in

 %
)

No. of malicious nodes (delay= 1 s)

interval=16.7 mins
interval=1.39 hours
interval=2.78 hours
interval=13.9 hours
interval=27.8 hours

(a) (b) (c)
Fig. 9. Delay attacks and the synchronization interval

 0.1

 1

 10

 100

 1000

10ms 100ms 1s 10s 100s

S
yn

c
In

te
rv

al
 (

in
 h

ou
rs

)

Delay Attack Time

successful detection rate >= 99%

Fig. 10. The tolerable synchronization interval

are 10ms, 100ms, 1s, 10s, and 100s respectively. Thus, given
a delay attack time, we can select the appropriate synchro-
nization interval without sacrificing the successful detection
rate. Since the threshold-based approach can tolerate 83.33-
hour synchronization interval on 1-second level delay attacks,
we claim that our threshold-based scheme is very effective on
defending against delay attacks in sensor networks.

VIII. C ONCLUSIONS

In this paper, we identified various attacks that are effective
to several representative time synchronization schemes, and
focused on dealing with the delay attack. We proposed two
solutions to detect and accommodate the delay attacks. Our
first approach uses the generalized extreme studentized deviate
(GESD) algorithm to detect multiple outliers introduced bythe
compromised nodes and our second approach uses a threshold
derived using a time transformation technique to filter out the
outliers. Extensive simulation results show that both schemes
are effective in defending against delay attacks. However,the
GESD approach needs more reference nodes to effectively
detect the malicious nodes. The threshold based approach
relaxes this assumption and outperforms GESD in terms of
successful detection rate, false positive rate, and accuracy
improving rate.

REFERENCES
[1] Wensheng Zhang and Guohong Cao, “Optimizing tree reconfiguration

for mobile target tracking in sensor networks,”IEEE INFOCOM, 2004.
[2] Wensheng Zhang and Guohong Cao, “Dctc: Dynamic convoy tree-based

collaboration for target tracking in sensor network,”IEEE Transactions
on Wireless Communication, vol. 3, no. 5, pp. 1689–1701, 2004.

[3] Adrian Perrig, Ran Canetti, Dawn Song, and J. D. Tygar, “Efficient and
secure source authentication for multicast,” inNetwork and Distributed
System Security Symposium, NDSS ’01, Feb. 2001, pp. 35–46.

[4] Jeremy Elson, Lewis Girod, and Deborah Estrin, “Fine-grained network
time synchronization using reference broadcasts,”SIGOPS Oper. Syst.
Rev., vol. 36, no. SI, pp. 147–163, 2002.

[5] Saurabh Ganeriwal, Ram Kumar, and Mani B. Srivastava, “Timing-sync
protocol for sensor networks,” inProceedings of the 1st international
conference on Embedded networked sensor systems. 2003, pp. 138–149,
ACM Press.

[6] Jana van Greunen and Jan Rabaey, “Lightweight time synchronization
for sensor networks,” inProceedings of the 2nd ACM international
conference on Wireless sensor networks and applications. 2003, pp. 11–
19, ACM Press.

[7] M. L. Sichitiu and C. Veerarittiphan, “Simple, accuratetime synchro-
nization for wireless sensor networks,”Wireless Communications and
Networking (WCNC’03), IEEE, vol. 2, pp. 16–20, March 2003.

[8] M. Chen, W. Cui, V. Wen, and A. Woo, “Security and deployment issues
in a sensor network,” 2000.

[9] E. D. Kaplan, editor,Understanding GPS: Principles and Applications,
Artech House, 1996.

[10] David L. Mills, “Internet time synchronization: The network time
protocol,” in Zhonghua Yang and T. Anthony Marsland (Eds.), Global
States and Time in Distributed Systems, IEEE Computer Society Press,
1994.

[11] Jeremy Elson and Deborah Estrin, “Time synchronization for wireless
sensor networks,” inProceedings of the 15th International Parallel
& Distributed Processing Symposium. 2001, p. 186, IEEE Computer
Society.

[12] Qun Li and Daniela Rus, “Global clock synchronization in sensor
networks,” in IEEE Infocom 2004, Hong Kong, china, March 2004.

[13] Laurent Eschenauer and Virgil D. Gligor, “A key-management scheme
for distributed sensor networks,” inCCS ’02: Proceedings of the 9th
ACM conference on Computer and communications security, New York,
NY, USA, 2002, pp. 41–47, ACM Press.

[14] Wenliang Du, Jing Deng, Yunghsiang S. Han, and Pramod Varshney, “A
pairwise key pre-distribution scheme for wireless sensor networks,” in
Proceedings of the 10th ACM Conference on Computer and Communi-
cations Security (CCS), Washington DC, October 27-31 2003.

[15] Haowen Chan, Adrian Perrig, and Dawn Song, “Random key predis-
tribution schemes for sensor networks,” inSP ’03: Proceedings of the
2003 IEEE Symposium on Security and Privacy, Washington, DC, USA,
2003, p. 197, IEEE Computer Society.

[16] Sergio Marti, T. J. Giuli, Kevin Lai, and Mary Baker, “Mitigating routing
misbehavior in mobile ad hoc networks,” inProceedings of the 6th
annual international conference on Mobile computing and networking.
2000, pp. 255–265, ACM Press.

[17] Joseph Y. Halpern, Barbara Simons, Ray Strong, and Danny Dolev,
“Fault-tolerant clock synchronization,” inPODC ’84: Proceedings of the
third annual ACM symposium on Principles of distributed computing,
New York, NY, USA, 1984, pp. 89–102, ACM Press.

[18] Leslie Lamport and P. M. Melliar-Smith, “Byzantine clock synchroniza-
tion,” in PODC ’84: Proceedings of the third annual ACM symposium
on Principles of distributed computing, New York, NY, USA, 1984, pp.
68–74, ACM Press.

[19] Leslie Lamport and P. M. Melliar-Smith, “Synchronizing clocks in the
presence of faults,”J. ACM, vol. 32, no. 1, pp. 52–78, 1985.

[20] A. Olson and K. G. Shin, “Fault-tolerant clock synchronization in large
multicomputer systems,”IEEE Trans. Parallel Distrib. Syst., vol. 5, no.
9, pp. 912–923, 1994.

[21] C. Santivanez and J. Redi, “On the use of directional antennas for sensor
networks,” inMilitary Communications Conference (MILCOM 2003), ,
October 2003.

[22] Crossbow Technology Inc., “Wireless sensor networks,” in
http://www.xbow.com/, Accessed in November, 2004.

[23] Sencun Zhu, Sanjeev Setia, and Sushil Jajodia, “Leap: efficient security
mechanisms for large-scale distributed sensor networks,”in Proceedings
of the 10th ACM conference on Computer and communications security.
2003, pp. 62–72, ACM Press.

[24] Adrian Perrig, Robert Szewczyk, J. D. Tygar, Victor Wen, and David E.
Culler, “Spins: security protocols for sensor networks,”Wirel. Netw.,
vol. 8, no. 5, pp. 521–534, 2002.

[25] D. M. Hawkins, Identification of Outliers, New York: Chapman and
Hall, 1980.

[26] B. Iglewicz and D. C. Hoaglin,How to Detect and Handle Outliers,
ASQC basic references in quality control, 1993.

[27] B. Rosner, “Percentage points for generalized esd many-outlier proce-
dure,” Technometrics, 1983.

[28] Kay R̈omer, “Time synchronization in ad hoc networks,” inProceedings
of the 2nd ACM international symposium on Mobile ad hoc networking
& computing. 2001, pp. 173–182, ACM Press.

[29] Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar, David Culler, and
Kristofer Pister, “System architecture directions for networked sensors,”
SIGOPS Oper. Syst. Rev., vol. 34, no. 5, pp. 93–104, 2000.

